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The superradiant phenomenon, usually described by the Dicke model, is a hallmark of strong light-
matter interaction. We explore how matter-matter interactions influence this phenomenon by performing
ground-state simulations of Dicke-like models with both isotropic and anisotropic interactions. We find that
Ising-type interactions produce two qualitatively distinct phase boundaries, one of which gives rise to an
antiferromagnetic-normal phase connected to the superradiant regime via a first-order phase transition.
Under anisotropic couplings, we uncover a strongly correlated phase where in-plane spin order coexists
with superradiance, exhibiting sublinear scaling of the photon occupation per site and power-law decay of
spin correlations. Furthermore, superradiance is strengthened by tuning either isotropic or anisotropic
interactions, highlighting the role of intrinsic many-body correlations in shaping light-matter quantum
phases.
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Coupling a macroscopic ensemble of quantum emitters
to a common electromagnetic mode gives rise to collective
phenomena such as photon-mediated entanglement and
superradiant photon condensation. These effects underlie
emerging technologies in quantum computing, simulation,
communication, and sensing [1–7]. More recently, these
systems have inspired new paradigms such as quantum
batteries, which aim to harness collective phenomena like
superradiance for fast and efficient energy storage and
delivery [8,9]. Substantial progress has been made in this
direction, both experimentally [10–13] and theoretically
[14,15]. However, capturing the many-body physics of
these complex systems remains challenging.
Existing theoretical studies of light-matter hybrid sys-

tems commonly rely on two classes of approximations,
leading to simplified models such as the Dicke and
extended Bose-Hubbard models. The Dicke model retains
the photonic degree of freedom but neglects interactions
inside the matter system, simplifying it into a collection of
noninteracting two-level qubits coupled to a shared photon
mode [10,14,16–19]. Although widely adopted in quantum
battery and circuit QED studies, the neglected interactions
are intrinsic and usually unavoidable in real systems. These
interactions originate from multiple mechanisms: in circuit
QED, capacitive couplings among qubits give rise to
tunable ferromagnetic or antiferromagnetic interactions
[20–24]; in optical cavity QED, dipole-dipole inter-
actions among atoms or molecules lead to short-range

spin-exchange terms across optical lattices or tweezer
arrays [25,26]; and in quantum batteries, electronic tunnel-
ing and molecular interactions generate similar short-range
couplings [27–30]. These interactions can substantially
reshape the emergent phases and alter the performance
of quantum devices [31].
On the other hand, the extended Bose-Hubbard model

treats matter degrees of freedom explicitly while integrating
out the photonic field, thereby reducing the problem to a
competition between short-range and photon-mediated
long-range interactions [32–35]. However, this framework
cannot capture superradiant effects, which requires retain-
ing the polaritonic wave function [36–38].
To overcome the limitations of simplified models and

explore the rich many-body physics arising from both light-
matter and matter-matter interactions, it is thus needed to
incorporate interactions among the matter degrees of free-
dom (see Fig. 1). In order to simulate the strong-coupling
regime efficiently, in this Letter we develop a hybrid
numerical approach that combines a variational polaritonic
dressing with an exact many-body solver for the matter
subsystem, thereby going beyond mean-field approxima-
tions. This framework allows us to treat both light-induced
collective effects and interaction-driven correlations on
equal footing. Thus, we identify the impact of different
types of interactions on the ground-state phases: in the
Dicke-Ising model, we observe both first- and second-order
phase transitions into the superradiant phase, while in the
Dicke-XXZ model, we reveal a coexistence phase featuring
XY spin order and superradiance. In both cases, super-
radiant signatures are significantly enhanced relative to
those in the standard Dicke model.
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The extended model we consider, referred to as the
Dicke-Heisenberg model, is described by the Hamiltonian

H ¼ ωa†aþ ε
XN

i¼1

szi þ
2gffiffiffiffi
N

p
XN

i¼1

sxi ðaþ a†Þ

−
X
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X

α¼x;y;z

Jαs
ðαÞ
i sðαÞj ; ð1Þ

where the first three terms correspond to the standard Dicke
model [39–41] and the final term reflects interactions
among the matter degrees of freedom [42]. Each two-level
matter component, separated by energy ε, is encoded as a
local spin-1=2 operator sαn. For clarity and generality, we
refer to these two-level systems as “spins” throughout,
although they may represent atomic orbitals, molecular
states, or superconducting qubits in experimental imple-
mentations. The operators a and a† denote photon anni-
hilation and creation operators, respectively, with a fixed
frequency ω. g is the light-matter interaction strength and N
is the system size. We set ω ¼ ε ¼ 1 throughout this Letter.
Numerical approach—The model in Eq. (1) that com-

bines spins and photons poses considerable numerical
challenges due to the distinct physical nature of their
constituent subsystems. Interacting spins exhibit strong
correlations that demand quantum many-body computa-
tional techniques [43–49]. In contrast, the photon subsys-
tem inhabits an infinite-dimensional Hilbert space, with
occupation numbers that can grow significantly in super-
radiant or polaronic regimes. Direct truncation of the
bosonic space quickly becomes unreliable. However, the
photonic field is typically highly coherent, with weak
internal entanglement, suggesting that variational methods
can effectively capture its wave function [50,51].

A practical strategy for addressing strong coupling in
such composite systems involves a variational unitary
transformation, i.e., the polaritonic dressing, which dis-
places the photon field in a way that depends on the many-
body state of the spins [52–54]. This transformation rotates
the system into a frame where spin and photon wave
functions are approximately separable. Here, we apply this
hybrid variational method to the models defined in Eq. (1).
Specifically, the hybrid numerical approach adopted here
leverages a non-Gaussian state (NGS) ansatz, jψi ¼
Uλðjψphi ⊗ jϕiÞ, where jψphi describes the photonic
degrees of freedom, jϕi is a many-body spin wave func-
tion, and Uλ is a non-Gaussian unitary entangling trans-
formation that encodes polaritonic correlations. The photon
state jψphi is approximated by a Gaussian state jψphi ¼
eiR

TσΔRe−ði=2ÞRTξRj0i, where R ¼ ðx; pÞT represents the
bosonic quadrature vector. The photon displacement is
generated by ΔR and squeezing is induced by ξ [55]. The
NGS transformation Uλ introduces entanglement between
photons and spins:

Uλ ¼ exp

�
−λ

X

i

sxi ða† − aÞ
�
: ð2Þ

The variational parameter λ controls the polaritonic dress-
ing and is determined self-consistently along with the
photon variational parameters described below.
The variational ground state of the Dicke-Heisenberg

model is obtained by minimizing the total energy
EðΔR; ξ; λ; jϕiÞ ¼ hψ jHjψi. This is accomplished using a
self-consistent approach involving two coupled optimiza-
tion procedures. The first step minimizes the energy with
respect to the variational parameters ΔR; ξ, and λ, which
determine the NGS transformation and the photon state. By
fixing these variational parameters, the second step numeri-
cally calculates the ground state jϕi of the effective spin
Hamiltonian HeffðΔR; ξ; λÞ ¼ hψphjU†

λHUλjψphi, which is
renormalized by the above transformations [56–62], via
density matrix renormalization group (DMRG). This
numerical simulation is conducted only for the spin
subsystem without the necessity of truncating the photonic
Hilbert space. Together, these two updates form a single
self-consistent iteration, ensuring the energy decrease,
which is repeated until convergence. This method ensures
that even when the physical photon number becomes
large—as is typical in superradiant regimes—the bosonic
fluctuations in the transformed frame remain small and
numerically tractable. Thus, it enables an accurate and
efficient solution for strongly coupled systems with
many-body effects (see further analysis in Supplemental
Material [63]).
In this Letter, we restrict our analysis to a one-

dimensional chain with nearest-neighbor spin interactions,
a geometry naturally compatible with DMRG due to its

FIG. 1. Schematic of the Dicke-Heisenberg model. The system
comprises an ensemble of two-level qubits, embedded in an
optical cavity. They interact anisotropically with their nearest
neighbors through an exchange interaction J and couple collec-
tively to a single cavity mode with strength g. Dissipative effects
include photon loss at rate κ and spontaneous emission at rate γ,
both of which are assumed to be slow compared to the coherent
coupling (i.e., g2 ≫ 2γκ).
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low entanglement scaling and efficient tensor network
representation [66]. While exact diagonalization has pre-
viously proven efficient for hybrid NGS approaches in
electron-phonon systems [53,67], DMRG offers significant
advantages for models such as the Dicke-XXZ model,
particularly when extrapolating to the thermodynamic limit
becomes essential.
We first benchmark the hybrid variational framework on

the standard Dicke model by setting all spin-spin inter-
actions to zero (Jα ¼ 0). This serves as a useful test case,
allowing direct comparison with analytically known
results. We monitor key physical quantities, including the
ground-state energy, average photon number, and magneti-
zation. Our simulations capture the well-established super-
radiant phase transition at gc ¼

ffiffiffiffiffiffi
ωε

p
=2 in the large-N limit,

as shown in Figs. 2(a) and 2(b). The magnetization,
Mz ¼

P
ihszi i=N, and per-site photon occupation hni=N

transition sharply across the critical point [68]: from a
finite Mz and vanishing hni=N in the normal phase to a
vanishing Mz and sizable hni=N in the superradiant phase.
As expected, the total photon number is size independent
(equivalently, hni=N ≈ 0) in the normal phase, while
scaling linearly with N in the superradiant regime, con-
sistent with hni ∝ N. In addition, because the Dicke model

without spin-spin interactions possesses permutation sym-
metry, its ground state can be solved analytically in the
thermodynamic limit via Holstein-Primakoff transforma-
tion [41,63]. Our numerical simulations converge toward
the analytic coherent-state solution as N increases, validat-
ing the accuracy of the hybrid method across both finite-
size and thermodynamic regimes.
Dicke–Ising model—Building on the benchmark analysis

of the standard Dicke model, we now incorporate spin-spin
interactions and investigate the resulting phase diagram of
the Dicke-Ising model. These nonperturbative interactions
explicitly break permutation symmetry and further reduce
residual spin symmetries, which directly affects the super-
radiant properties and places the model beyond the reach of
perturbative or mean-field approximations. To isolate the
impact of Ising-like couplings, we set Jx ¼ Jy ¼ 0 and
Jz ¼ 4J. As illustrated in Fig. 3(a), the inclusion of spin-
spin interactions leads to significant restructuring of the
phase diagram, giving rise to three distinct phases
described below.
Starting from the standard Dicke limit (J ¼ 0),

marked by the vertical arrow in Fig. 3(c), the critical
coupling gc acquires a J dependence described by
gcðJÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωε=4þ ωJ

p
[63]. Notably, gc decreases as J

(a)

(b)

FIG. 2. Ground-state properties of the Dicke model obtained
via the hybrid variational method. (a) Average energy and
(b) average photon occupation and absolute magnetization.
Simulations are performed for N ¼ 200. The insets show the
iteration errors at each step of the self-consistent iterations for the
representative case g ¼ 0.25 system. The energy is converged to a
threshold of 10−12, while photon number and magnetization are
converged to 10−8.

(a)

(b)

(c)

FIG. 3. (a) Representative spin configurations in phases of the
Dicke-Ising model. (b) Magnetization and average photon
number calculated for g ¼ 0.5 and N ¼ 100. (c) Phase diagram
of the Dicke-Ising model, where the solid (dashed) lines denote
second-order (first-order) transitions between the normal and
superradiant phases. The normal phase is further divided by a
critical coupling Jc into regions with distinct spin configurations.
The vertical arrow marks the Dicke model.
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becomes negative and vanishes at J ¼ −ε=4, which defines
a critical coupling Jc. This separates the normal phase into
a ferromagnetic-normal (FM NP) phase for J > Jc and an
antiferromagnetic-normal (AFM NP) phase for J < Jc.
On the FM NP side (J > Jc), the transition into

the superradiant phase resembles that of the standard
Dicke model. As the light-matter coupling g exceeds the
renormalized threshold gcðJÞ, the system undergoes a
continuous phase transition from the normal phase to
the superradiant phase, now termed the paramagnetic-
superradiant (PM SP) phase to include the spin configu-
ration. The latter is characterized by a vanishing spin order
and finite photon occupation. Alternatively, for a fixed g
within the normal phase, decreasing J across the phase
boundary leads to a continuous decline in magnetization
[see Fig. 3(b)], confirming the FM PM second-order
transition and reflecting the underlying symmetry-breaking
mechanism. This finding contrasts with a recent conclusion
obtained by small-size exact diagonalization with Hilbert
space truncation [69], which interpreted the transition as
first order. Our simulations extrapolate to the thermody-
namic limit and resolve this discrepancy, showing that the
FM NP to PM SP transition remains second order, con-
sistent with the standard Dicke model. This conclusion is
corroborated by a mean-field analysis in the thermody-
namic limit, where the impact of the Ising interaction can be
effectively absorbed by renormalizing the level splitting as
εeff ¼ εþ 4J, consistent with the observed gcðJÞ [63].
An important consequence of introducing spin-spin

interactions is the substantial enhancement of photon
number in the superradiant phase. As demonstrated in
Fig. 3(b), for g ¼ 0.5, which coincides with the critical
coupling gcðJ ¼ 0Þ of the standard Dicke model marking
the onset of superradiance, the per-site averaged photon
number increases markedly with moderate negative values
of J, reaching nearly 0.2. This enhancement can be
understood as a consequence of the renormalized critical
threshold: negative J lowers the effective gc, shifting the
system deeper into the superradiant regime at fixed g. This
mechanism provides a practical route for engineering
enhanced superradiant states through moderate spin-spin
interactions. However, the effect is not unbounded. As
illustrated in Fig. 3(b), further decreasing J beyond −0.27
causes the photon number to decrease. Thus, an optimal
interaction strength exists that maximizes superradiance at
a given light-matter coupling. Beyond this point, stronger
interactions destabilize the superradiant state due to the
onset of a competing phase.
On the AFM NP side (J < Jc), the system exhibits

qualitatively different behavior from that of the standard
Dicke model. As shown in Fig. 3(b), reducing J beyond
a secondary threshold (∼ − 0.43 for g ¼ 0.5) results in a
sharp, discontinuous jump in key observables, indicating
a first-order phase transition. Although this phase lacks
superradiance, with vanishing photon occupation, it is

distinct from both the Dicke normal phase and the FM
NP regime due to its internal spin structure. Specifically,
the spin subsystem exhibits long-range antiferromagnetic
order, as confirmed by staggered spin correlations
hð−1Þrszi sziþri ¼ 1=4. Because the AFM and super-
radiant phases break fundamentally different symmetries
(translational and parity, respectively), they cannot be
adiabatically connected by a continuous phase transition.
Therefore, unlike the FM NP, where the interaction
simply renormalizes the level splitting, the AFM NP to
PM SP reflects a discontinuous change in symmetry of the
ground state. This behavior contrasts with a recent varia-
tional mean-field study that reported a phase with coex-
isting AFM order and superradiance [21]. With careful
tuning of parameters and extrapolation to the thermo-
dynamic limit, our simulations do not observe such a
coexistence phase. This discrepancy highlights the impor-
tance of treating the spin sector exactly: while the photonic
sector is often well approximated by a coherent state,
strongly correlated spin states may introduce significant
effects [63].
Dicke-XXZ model—Beyond isotropic spin-spin cou-

plings, many experimental systems naturally host anisotropic
matter-matter interactions, arising from directional dipolar
forces and anisotropic tunneling processes [26,70–72].
Motivated by these physical realizations, we further con-
sider the Dicke-XXZ model, where Jx ¼ Jy ¼ 1 and Jz is a
tunable anisotropy parameter. The distinction between the
Dicke-Ising and Dicke-XXZmodels primarily inherits from
their different ground-state phase diagrams at zero light-
matter coupling (g ¼ 0). Whereas the Dicke-Ising model
exhibits a single critical coupling Jc in Fig. 3, the XXZ
model splits it into two critical couplings JFMc ¼ 0 and
JAFMc ≈ −2.8 [73–76]. The intermediate phase is usually
referred to as the gapless XY phase. The introduction of
light-matter interaction further broadens up the inter-
mediate phase: a finite photon occupation hni=N emerges
beyond these two critical couplings by destabilizing the FM
and AFM orders, as shown in Fig. 4(a).
Within this intermediate region, where in-plane XY

correlations dominate and the spin sector is paramagnetic,
an infinitesimal light-matter interaction g is sufficient to
induce divergence in the total photon number hni. While
such divergence is a signature of superradiance, its mani-
festation here differs markedly from the standard Dicke or
Dicke-Ising models, where the photon number per site
saturates in the superradiant phase (see Figs. 2 and 3).
Instead, due to persistent in-plane XY fluctuations, it
displays sublinear scaling with system size: hni=N ∝
N−α with 0 ≤ α < 1 [see Fig. 4(b)]. As the light-matter
interaction g increases for a fixed Jz, the exponent α
decreases continuously toward zero, suggesting a smooth
evolution toward the conventional superradiant regime. For
comparison, in the normal FM NP and AFM NP phases,
we observe hni=N ∝ 1=N, which implies a constant total
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photon number but vanishing per-site occupation in the
thermodynamic limit.
The coexistence of spin correlations and photon super-

radiance is another distinctive feature of this intermediate
phase. In Fig. 4(c), the in-plane spin correlations hsxi sxiþri
decay exponentially in the normal phases, where z-axis FM
or AFM order dominates. In contrast, within the XY phase,
the correlations follow a power-law decay, indicating quasi-
long-range order. Although the photon field breaks rota-
tional symmetry in the xy plane by favoring sx polarization,
it does not destroy the XY correlations. Instead, the power-
law character persists across the superradiant regime and
smoothly evolves into long-range order as g increases,
consistent with the Dicke-Ising-like superradiant phase
[see Fig. 4(c)].
In conclusion, we have explored how matter-matter

interactions shape the phases of strongly coupled light-
matter systems described by Dicke-like models, employing
a hybrid method that combines variational non-Gaussian
states with DMRG. This framework captures both strong
light-matter coupling and strong correlations on equal
footing, extending the understanding of such systems well

beyond mean-field or perturbative treatments (see demon-
strations in SM [63]). Our simulations reveal two distinct
types of phase boundaries induced by Ising-type inter-
actions: one that adiabatically shifts the conventional
superradiant boundary, and another that produces a quali-
tatively different normal phase characterized by antiferro-
magnetic order and first-order transition to superradiance.
Introducing anisotropic interactions further enriches the
phase diagram, leading to a strongly correlated intermedi-
ate regime where in-plane spin order coexists with super-
radiance. These results highlight the intricate effects of
matter interactions and the necessity of many-body
approaches.
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