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Resonant spectroscopies, which involve intermediate states with finite lifetimes, provide essential insights into
collective excitations in quantum materials that are otherwise inaccessible. However, theoretical understanding
in this area is often limited by the numerical challenges of solving Kramers-Heisenberg-type response functions
for large-scale systems. To address this, we introduce a multishifted biconjugate gradient algorithm that exploits
the shared structure of Krylov subspaces across spectra with varying incident energies, effectively reducing the
computational complexity to that of linear spectroscopies. Both mathematical proofs and numerical benchmarks
confirm that this algorithm substantially accelerates spectral simulations, achieving constant complexity inde-
pendent of the number of incident energies, while ensuring accuracy and stability. This development provides a
scalable, versatile framework for simulating advanced spectroscopies in quantum materials.
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I. INTRODUCTION

Understanding how collective excitations—such as spin,
charge, orbital, and lattice modes—interact and evolve across
energy scales is central to revealing the emergent proper-
ties and functionalities of quantum materials [1,2]. These
excitations are typically probed using momentum- and
energy-resolved spectroscopic techniques, such as optical ab-
sorption, Raman, and neutron scattering. As research has
deepened, increasing attention has been drawn to collective
modes like selection-rule-forbidden orbital excitations, entan-
glement, and hidden orders. These challenges have spurred the
rapid development of nonlinear resonant spectroscopies over
the past two decades [3-6]. A particularly powerful technique
is the resonant inelastic x-ray scattering (RIXS) [7,8], which
has enabled groundbreaking discoveries in cuprates [9-11],
nickelates [12-14], and other transition-metal compounds
[15-18]. Other resonant spectra, such as two-photon absorp-
tion, resonant Raman scattering, and pair photoemission, also
provide crucial information on unconventional symmetries
and fluctuations in quantum materials [19-24].

Efficiently using these spectral techniques requires quanti-
tatively linking the response functions to specific underlying
excitations. While linear spectroscopies can often be uni-
fied under two-point dynamical correlations governed by the
Kubo formalism, resonant spectroscopies require higher-order
perturbative treatments described by the Kramers-Heisenberg
formalism [8]. This response function explicitly incorporates
the dynamics of the intermediate state [25]. Typically, an
incident photon excites the system into an intermediate state
|Wine) with a finite lifetime (denoted as 1/I"), after which the
system radiatively relaxes by emitting a photon [see Fig. 1(a)].
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The cross section for this two-step process is calculated as
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Here, Eg and |G) denote the ground-state energy and wave
function; wj, and wj, — w are the photon energies involved
in the two steps of the response, and ' is the Hamiltonian
governing the intermediate state, which may differ signifi-
cantly from the initial-state Hamiltonian . The operators
@1 »2 encode the relevant excitations: for RIXS, they are
dipole transition operators; for Raman scattering, they are
symmetry-resolved current operators; and for other resonant
spectroscopies, they are defined accordingly.

At the ultrashort lifetime limit (I' — o0), the intermediate
state becomes virtual, and Eq. (1) simplifies to the Kubo
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FIG. 1. (a) Schematic illustrating a typical resonant scattering
process, where an intermediate state with finite lifetime and many-
body effects is generated. (b) Example of a resonant spectrum, the
spin-flip RIXS response for magnon excitations, showing the de-
pendence of scattering intensity on both incident photon energy and
energy loss.
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formalism [26-29], allowing the full energy spectrum to be
computed efficiently using the continued fraction expansion
[30]. However, this approximation fails to reflect the realistic
energy scales and spectral distributions and can significantly
underestimate the contributions of critical excitations [31].
As a result, obtaining realistic predictions requires the ex-
plicit solution of the full Kramers-Heisenberg response, i.e.,
Egs. (1) and (2). This simulation challenge arises because cal-
culating the cross section requires evaluating the intermediate
state |Wiy (win)) for each incident energy wj, [see Fig. 1(b)].
Each such evaluation relies on solving a linear system defined
by Eq. (2), and for quantum many-body systems, where the
Hilbert space dimension grows exponentially with system
size, this step constitutes the dominant computational bot-
tleneck. Thus, the overall computational cost of simulating
resonant spectroscopies is vastly higher than that of linear
spectroscopies, and the cost scales linearly with the number
of incident energies sampled. This severe computational com-
plexity has significantly limited the scope and accuracy of
resonant spectroscopy simulations, posing a major challenge
for theoretical and computational studies in the field.

To address the computational bottlenecks inherent in sim-
ulating Kramers-Heisenberg-type resonant spectroscopies, we
introduce an algorithm based on the multishifted biconjugate
gradient (MSBiCG). This method leverages the invariance
of Krylov subspaces under constant shifts and the colinear-
ity of residuals, enabling the reuse of Krylov vectors across
different incident energies. By eliminating redundant matrix-
vector multiplications (MVMs) typically required to construct
separate Krylov subspaces, the computational cost becomes
independent of the number of wj,s, reducing the computa-
tional cost to a level comparable to that of linear spectral
simulations. This advance enables efficient, scalable numer-
ical simulations of large-scale resonant spectroscopies.

II. MULTISHIFTED BICONJUGATE GRADIENT

To set the stage for our approach, we first review how the
resonant spectroscopies described by Eq. (1) are tradition-
ally addressed in numerical methods. Because direct matrix
inversion is numerically unstable, the propagator in Eq. (2)
is reformulated as the linear problem (A — wi,l) |Win) =
|E), with A=H —Eg—il' € CP*? and |E) = O,|G) €
CP. Both the (sparse) matrix A and the excited-state wave
function |E) reside in a Hilbert space of dimension D. Solving
such large sparse problems efficiently relies on Krylov-
subspace methods, which construct the m-dimensional Krylov
space,

Kn(A, 1ro)) = span{|ro) , Alrg) , -+, A" o)} (3)

Here, |ry) = |E) — A| W) is the initial residual with initial
guess [Wy) (see Appendix A). Among Krylov approaches,
minimal residual (MINRES) [32] and biconjugate gradient
stabilized (BiCGStab) algorithms [31,33-35] are widely em-
ployed in exact diagonalization (ED) calculations of resonant
spectra because of their numerical stability [36]; conjugate
gradient and correction vector method are implemented with
the density matrix renormalization group (DMRG) for simu-
lations in long 1D chains [37-40]. However, these advanced
techniques face the aforementioned bottlenecks when cov-
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FIG. 2. (a) Flowchart illustrating the BiCG or MINRES algo-
rithms for solving the linear problem in Eq. (2) across multiple
incident energies, where each incident energy is treated as an in-
dependent problem, requiring separate Krylov space construction.
(b) Flowchart illustrating the MSBiCG algorithm, which utilizes
the collinear residuals and recycles Krylov spaces generated from
the seed system. (c) Example using a 2 x 2 toy matrix system,
illustrating the collinearity of BiCG residuals (red arrows) in a two-
dimensional vector space for different shifts. In contrast, residuals
from MINRES (blue arrows) do not satisfy this collinearity con-
dition. The contour represents the quadratic form, (V| A |W¥) /2 —
(E|W) for this toy system.

ering various excitations across a wide range of incident
energies. This challenge arises because solving Eq. (2) iter-
atively demands constructing a separate Krylov subspace for
each wj, [see Fig. 2(a)], resulting in significantly more MVMs
compared to linear ones solvable with the continued fraction
expansion [30].

Rather than treating each individual incident energy as an
independent problem, we recognize that the systems differ
only by a constant shift in the matrix. As a result, the Krylov
subspace of a shifted system, KC,,(A — wil, |E)), is the same
Krylov subspace of a pre-selected seed system, /C,,(A, |E)),
if |Wy) = |0) (null vector) is used for all systems [see the
Appendix B for a detailed proof]. This observation motivates a
strategy to recycle Krylov vectors across all shifted problems
(corresponding to spectra at different wj,s) simultaneously,
eliminating the need for additional MV Ms.

This strategy achieves particular efficiency when combined
with iterative methods satisfying the Petrov-Galerkin condi-
tion, such as CG and BiCG [41]. In these methods, not only
are the Krylov subspaces identical across all shifted systems,
but the individual residual vectors at each iteration are guar-
anteed to be collinear across shifts (see Appendix B for a brief
proof and Refs. [42,43] for a full mathematical proof),

|rlem)) = (1765 |rm) )

where |7} is the mth residual for the shifted system with
incident energy w;, and |r,,) is the residual of the seed system.
This collinearity ensures that, as long as the same initial guess
|Wo) = |0) is used for all shifted problems, the algorithm only
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needs to track the scalar coefficient ¢ at each iteration for
each shifted system, avoiding additional vector operations. By
contrast, methods like MINRES do not satisfy the collinearity
condition and therefore require extra vector calculations for
each shift, as illustrated in Fig. 2(c).

Following the standard three-term recurrence for the BiCG
residual and its polynomial form, the recurrence relation for
the scaling factors reads as (see details in Appendix C),

amﬁﬂl (

m—

Gt = (L @)™ + = (04 = ¢, ) - (5)
where «,, = (ru| rm)/{rm| A |pm) (|pm) is search direction)
and B,, = (Fme1| rma1)/{rml ) are the Lanczos coefficients
of the seed system. (Here, we have avoided introducing dual
vectors, as explained in Appendix A.) Once the BiCG resid-
ual |r,) (and its corresponding «,, and B,,) is computed for
the seed system, the residuals for all shifted systems can be
updated directly using Egs. (4) and (5).

With the updated ¢“n) and the residual vectors |r{@n)),
we can calculate the wy,-specific BiCG coefficients a,(n""“) and
B{@n) without performing any additional MVMs. Thanks to
the collinearity property, these coefficients are directly scaled
from the seed-system ones,
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Finally, the search directions and approximate solutions for
the shifted systems are updated analytically (see Appendix C
for the derivations and the full algorithm in Appendix D),

[P) = (L7677 Ird + B3 [Py} (D)
|\l_,l§§jl_nl)> |\I](wm))+a(wm) p(::)m)) 8)

After iterating, we monitor the convergence of both the seed
and all shifted systems, terminating the algorithm once all
systems have reached convergence.

Although the iterative steps in Egs. (4)—(8) involve mul-
tiple vector and scalar operations, their computational cost
is negligible for large systems since no MVM is required.
Consequently, the overall computational complexity of the
MSBICG algorithm is effectively determined by the MVM
count of the seed system, yielding (m — 1) for any resonant
spectral calculations, regardless of the number of incident
energies involved. For systems with complex Hamiltonian
entries, such as dissipative systems or a models that break
time-reversal symmetry, the need to explicitly construct the
dual subspace doubles the MVM count [36]. In contrast, a
conventional BiCGStab algorithm incurs 2n(m — 1) MVMs
when treating n separate wj,s, reflecting the substantial per-
formance acceleration offered by MSBiCG.

III. PERFORMANCE BENCHMARK
IN HUBBARD-MODEL SYSTEMS

To benchmark the performance of the MSBiCG algorithm
on a physically relevant system, we simulate RIXS spectra
for a single-band Hubbard model, a representative model for
strongly correlated electrons, using both the BiCGStab and

MSBICG algorithms. The Hamiltonian is given as

H=- th](cjgcm +HC)+UZH,TI1,¢, (9)

i,jo

where c (ciy) creates (ann1h1lates) an electron with spin

o at sr[e i, and n;, = c Cic denotes the local density. We
truncate the hopping 1ntegrals t;; to the nearest neighbor t =
0.4 eV and next-nearest neighbor t' = —0.3¢, with the on-site
Coulomb interaction fixed at U = 8¢. The ground state |G) is
calculated using the parallel Arnoldi method with Paradeisos
acceleration [44,45].

The intermediate state |Wj,) is generated by substituting
the generic operators O, and O, in Egs. (1) and (2) with
the specific dipole transition operators D;Ef and D, relevant
to the chosen RIXS process [8]. For example, at a direct
edge such as the Cu L-edge, the dipole operator is expressed
as Dig, =), Ml(j,)cjoh,w, where h;,, annihilates a core-
level (2p,, orbltal) electron at site { and the transition matrix
elements are given by M;(f&) = (3d| é; - t|2p,) [31,35]. The
introduction of a core hole modifies the system’s Hamiltonian
from Eq. (9), adding interaction terms between the core hole
and the valence electrons:

H = H+ Eeage Y hipahlyg = Ue Y Mighiyorh)

ino inoo’

(10)

In this paper, we set the core-hole interaction U, = 4¢ [31].

Figure 3(a) presents MSBiCG-based RIXS simulations for
a w-o polarization configuration at momentum transfer q =
(r, ) applied to a 12.5% hole-doped 16B Betts cluster [46],
designed to highlight the spin-flip channel. The intermediate
state’s dimension in this system reaches approximately 10°.
Without loss of generality, we select the atomic resonance
energy win = Eeqge as the seed system, allowing Eqgs. (5)—(8)
to generate solutions across all other incident energies. As
depicted in Fig. 1(a), the simulated RIXS spectrum promi-
nently reveals a paramagnon excitation spanning 1.3t to 3r.
To visualize the accuracy of MSBiCG, we extract an incident-
energy cut at @ = 1.35¢ and scan over 200 different wj,s (see
the middle panel). The RIXS intensity computed by MSBiCG
shows excellent agreement with that obtained from indepen-
dent BiCGStab runs for each wy,. Notably, near the spectral
peak, where precision matters most, the relative discrepancy
between the two methods is constrained to below 0.1% (see
the corresponding bottom panel).

Similarly, we simulate the RIXS spectrum using a different
polarization configuration while maintaining the same model
parameters, now at 25% hole doping. To provide a comple-
mentary comparison to Fig. 3(a), we focus exclusively on the
spin-conserved channel to compare, where the intermediate-
state Hilbert space dimension is 108. The spectrum exhibits a
single resonance at wy, ~ —2¢, whose excitation distribution
physically captures the in-gap charge mode induced by doping
[47]. When comparing the spectral cut at w = 2.4¢, we again
observe an excellent agreement between the two algorithms,
with the maximal relative error under 0.2%.

While the previous examples focused on direct RIXS spec-
tra, an equally important class of processes is indirect RIXS
[8], which is triggered by x-ray absorption into higher-energy
orbitals rather than the valence shell. Simulating indirect
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FIG. 3. (a) (Top) RIXS spectra simulated using the MSBiCG algorithm for the spin-flip channel at momentum transfer q = (7, 7 ), based
on a 12.5% doped Hubbard model and with inverse core-hole lifetime I' = . (Middle) Comparison between simulated spectra obtained using
BiCGStab (blue circles) and MSBiCG (red line) along the w = 1.35¢ cut, indicated by the dashed line in the top panel. (Bottom) Relative
spectral error (near the resonance peak) along this cut as a function of wj,s. (b) Same as (a) but for the spin-conserved channel and simulated
in a 25% doped Hubbard model. (c) Same as (b) but for indirect RIXS simulations.

RIXS requires substituting the valence operators in Eq. (10)
and the dipole excitation into electronic terms with electronic
operators acting on higher empty orbitals (e.g., the 4p orbital
for a Cu K-edge RIXS). Detailed descriptions of this model
are provided in Refs. [27,34,48] and are not repeated here. For
completeness, we benchmark the MSBiCG algorithm for in-
direct RIXS using the same model parameters as Fig. 3(b). As
shown in Fig. 3(c), the simulated spectrum features two main
peaks, corresponding to the poorly screened and hole-doped
absorptions [34], respectively (a third resonance near wy, =
Eeqge, representing the well-screened absorption, is present but
weak and unresolved under current parameters). The simula-
tion results from the two algorithms align well for the main
peak at wi, ~ 2.4z, yielding a relative error of just 1.1%.
However, the MSBiCG algorithm shows larger discrepancies
at the other resonant peak near wi, ~ —3.6¢, with the rela-
tive error increasing to 23%, as the residuals fail to reach
the convergence threshold of 1079, within the fixed iteration
limit of 1000. This behavior reflects a limitation of MSBiCG
when multiple strong poles are distributed across wj,. In such
cases, the Krylov subspaces of shifted systems are generated
through the recursions in Egs. (5) and (6), and round-off errors
accumulate as iterations proceed. These errors strongly affect
accuracy at distant resonances, particularly when they re-
quire many iterations to resolve. For spectra covering a broad
incident-energy range with multiple competing resonances,
this issue can be systematically addressed using an adaptive
reseeding strategy [see Appendix E for details].

After assessing accuracy, we turn to benchmarking the
efficiency of the MSBiCG algorithm relative to BiCGStab.
Figs. 4(a)—4(c) compare runtime and total MVMs for both al-
gorithms across various RIXS simulation cases. As discussed
above, the theoretical time complexity of MSBiCG scales
as (m — 1), in contrast to the 2n(m — 1) of BiCGStab. In
practice, however, MSBiCG often requires more iterations,
compared to a single BiCGStab problem, to reach the same

convergence threshold across all wi,s, as performance is gov-
erned by the most ill-conditioned shifted system (typically
near resonance). As a result, the observed acceleration is
often well below the ideal 2n factor, especially for relatively
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FIG. 4. (a)—(c) Runtime (green) and total MVM counts (blue)
comparison between BiCGStab (open squares) and MSBiCG (filled
circles) as a function of the total number of incident energies, for the
RIXS simulations shown in Figs. 3(a)-3(c), respectively. All simula-
tions use a residual threshold of 1076. (d)~(f) Memory consumption
for the corresponding RIXS simulations, comparing BiCGStab (open
squares) and MSBiCG (filled circles).
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small ns [49]. Nevertheless, as the density of incident energies
increases, the acceleration becomes increasingly pronounced:
for instance, on a dense meshgrid with 300 w;,s, MSBiCG
outperforms BiCGStab by roughly an order of magnitude.
More importantly, the scaling matches theoretical expecta-
tions: the runtime and MVM count of BiCGStab increase
roughly linearly with the number of wy,s, whereas those of
MSBICG remain largely constant. The small upward devi-
ation in MSBiCG’s cost arises from the additional Krylov
iterations required to maintain the same residual convergence
as the number of incident energies increases.

The MSBiCG algorithm saves iteration time by recycling
the Krylov subspace but requires increased memory usage,
as it must store all shifted residual vectors from Eq. (4). To
assess this memory overhead, we analyze the storage require-
ments for the MSBiCG and BiCGStab algorithms across the
simulations [see Figs. 4(d)—4(f)]. As expected, the memory
cost for MSBiCG increases linearly with the number of inci-
dent energies, reflecting the added storage for shifted vectors,
and grows more steeply than BiCGStab. It is important to
highlight that our BiCGStab-based spectral simulation em-
ploys a specific time-efficient approach: we first solve all
intermediate states |Wiy(win))s and only then compute the
final-state spectrum using Eq. (1) via continued fraction ex-
pansion. This strategy avoids simultaneously storing both the
‘H and H' Hamiltonian matrices in memory and eliminates the
need for repeatedly reconstruct the final-state Hamiltonian.
For extremely large numbers of wji, s, an alternative strategy of
retaining both Hamiltonians in memory could be considered,
which would cap the overall memory cost by allowing com-
puted | Wi (win)) to be released. However, we do not address
this extreme case within the scope of this paper, assuming
instead that minimizing Hamiltonian memory costs remains
the priority.

IV. CONCLUSIONS

We have developed the mustishifted biconjugate gra-
dient (MSBiCG) algorithm for solving general resonant
spectroscopies within the Kramers-Heisenberg formalism.
By exploiting the Krylov subspace structure across varying
incident energies, this method achieves nearly constant com-
putational complexity with respect to the number of incident
photon frequencies, reducing the simulation cost to a level
comparable to that of linear response calculations. MSBiCG
thus provides a highly efficient alternative to standard lin-
ear solvers such as BiCGStab and MINRES, substantially
lowering computational overhead for complex spectroscopies.
While our demonstrations focus on RIXS, the algorithm is
broadly applicable to a wide range of resonant spectroscopies,
including two-photon absorption, resonant Raman scattering,
and pair photoemission. Furthermore, the MSBiCG frame-
work can be integrated with tensor network methods, such as
DMRG, offering the potential to expand the simulation capa-
bilities for spectroscopies in large-scale quantum systems.
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APPENDIX A: SIMPLIFICATION OF THE
BIORTHOGONALITY CONDITION

The intermediate-state problem involved in a resonant
spectrum, described by Eq. (2), maps to the linear equation

(A = winD) [Win(@in)) = |E) (AD)

where A = (H' — Eg — iT") and |Wiy(wjn)) is the intermedi-
ate state induced by the wi,-energy of incident photon. The
linear solvers discussed in this paper focus on efficiently solv-
ing | Wiy (win)) s from a sequence of Eq. (A1) with various w;,s
using m-dimensional Krylov subspace,

Kn(A, |r0)) = span{|ro) , Alrg) , -+, A" ' |rg)}.  (A2)

In the context of general linear systems involving non-
Hermitian operators—such as our matrix .4—the inherent
asymmetry of A leads to a breakdown of orthogonality among
Krylov vectors. To address this issue, the biconjugate gradient
(BiCG) method requires the dual subspace of A, i.e.,

L,, = span{|7o) , A" 7o), -+, (ATY" " [7o)},

in order to maintain the biorthogonality conditions between
the primal and dual vector spaces, namely

(il A" |pi) = 83,
where |r;) (|7;)) is the i™ residual and |p;) (|p;)) is the search
direction constructed using the matrix A (A"), and the initial
dual space residual is |7) = |b) — A" |W,). Equations (A4)
are an essential condition for ensuring the stability and con-
vergence in BiCG method. However, constructing the dual
subspace L,, is just as computationally demanding as gener-
ating the primary Krylov subspace K,,. Fortunately, for most
systems of physical interest, the Hamiltonian 7’ is Hermitian
and can be written as a real-symmetric matrix in a certain
basis, making A = H' — Eg — il" complex only along its di-
agonal. In such cases, the explicit construction of £,, is no
longer required; rather, we can use the Hermitian conjugate
of the seed residuals in its place, i.e., |F;) = (|r;))*, thereby
relaxing the biorthogonality condition.

To demonstrate this, let us consider the seed system
A |W) = |E) with the initial guess solution chosen as the null
vector, |Wy) = |0). Although this initial choice is not strictly
required here, later we will see this choice plays important
role in maintaining collinearity among residuals, when shifted
systems are also considered. With the chosen initial condition,

(A3)

<17'j| r,-) = 871 and (A4)
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the initial residuals, for m = 0, simplify to

Iro) = |E) — AlWo) = |E), (AS)

7o) = |E) — A" [Wo) = |E) . (A6)

This automatically satisfies |#%) = |ro)* since |[E) € RP.

For m = 1, the approximate solution updates in the first
Krylov iteration are given by |W) = |Wy) + o |r9) = o |E)
and |¥;) = ag |E) for some scalar coefficient g € C. The the
corresponding residuals are

Iri) = 1E) — A[W1) = |E) —aoAE), (AT)

7)) = |E) — AT|¥)) = |E) — a3 ATIE).  (A8)

Since the Hamiltonian H’ € RP*? is real symmetric matrix,
A" =H' — Eg +il' = A*. Therefore, from Eqs. (A7) and
(A8), we have

1) = |E) — ag A* |E) = |r1)” (A9)

Now let us suppose |7,,) = |r,)*. Then, the (m + 1)th residu-
als satisfy

|Vm+1> = |E> - -Al“I"erl) = |E> - A(l‘ym) + am |rm>)

= [rm) — amAlrm) (A10)

and
[Fus1) = [E) — AT W,p1) = [E) — AT(1D,,) + o [Fn)
= [Fm) — A [F) . (Al1)

Since A" = A* and |7,,) = |r,)*, we have |Fpyi) = |Fmg1)™
By mathematical induction rule, the proof completes and we
established between two subspaces |7) = (|r;))* for all i =
0, 1,2, .... Under these conditions, the Eq. (A4) reduces to

(pil Alpi) = &), (A12)

which expresses the orthogonality among residuals and A-
orthogonality among search directions. Therefore, in our
specific scenario—applicable to most physics problems—
the dual subspace L, can be constructed directly from the
original Krylov space without additional matrix-vector multi-
plications. This strategy effectively reduces the computational
complexity of the original BiCG by 50% bringing it on par
with the cost of CG method.

In this simplified setting, the usual two-term recurrence
relations for the Krylov and dual residual updates in the BiCG
method reduce to a single-term recurrence—resembling the
structure of the CG algorithm. To be self-consist, we first
establish the complete set of update equations for the seed
system before extending them to the shifted systems in subse-
quent sections. For this purpose, we introduce an orthogonal
search direction |p,,) along which the approximate solution
vector is iteratively updated as

(rj|ri) :8ij and

[Winr1) = W) + & |Pm) - (A13)
Then, the residual update follows
Irnt1) = |E) — AlWni1) = |rm) — amAlpn) . (Ald)

We can find the value of scalar «,, by enforcing the orthogo-
nality between residuals |r,) and |ry41), i.e., {Fy| Fmy1) = 0,

which yields «,, = (ryy| )/ (rm| A|pn). For search direction
update, we define

|Pmt1) = [rms1) + B |Pm) 5 (A15)

and require A-orthogonality (p,,| A |pm+1) = 0, which results
Bn = — Fmstl Alpm) [ {Pml AlPm) = (Fmst| Fnsc1)/ (Tl 7).
Although we solve these equations here for our specific case
of real symmetric Hamiltonian, this method, in general, can
be extended to any complex Hamiltonian by retaining the full
Krylov and dual subspace structures along with conditions in
Eq. (A4).

APPENDIX B: BRIEF PROOF FOR THE IDENTITY OF
KRYLOYV SUBSPACES AND COLINEARITY OF
RESIDUALS

Here, we give a brief proof for the identity of the Krylov
subspaces generated by shifted systems and the colinear-
ity of the residuals generated using methods satisfying the
(Petrov-)Galerkin condition.

Initial residuals of shifted systems Eq. (A1) are given by

|r(()wm)) = |E) — (A — o) |\p(<)wm))_ (BD)

If the initial guesses for both the seed and all shifted systems
are set to zero, i.e., |Wy) = |0) and |\IJ(()‘“‘“)) = |0), then all
the initial residuals become identical and independent of the
shift parameter, i.e., |rp) = |r(()""")) = |E) V wiy. In this case,
it is straightforward that the Krylov space generated by the
seed system and that of the shifted systems span the same
m-dimensional subspace, i.e.,

Kn(A, Iro)) = Kn(A — winl, |ro)) forall win.  (B2)

This specific choice of initial guess ensures the collinearity
among the initial residuals, i.e.,

|rs?™) = (1/¢5™) Iro) , (B3)

with 1 /;’é‘”*") = 1. By combining Eq. (B2) with (Petrov-
)Galerkin condition, we can prove that the residuals across
all shifted systems continue to remain collinear at each it-
eration step m. The (Petrov-)Galerkin condition guarantees
that |r,,) L K, (A, |ro)) and [r{@)) 1 K, (A — winl, |10)) (for
m=1,2,...). From Eq. (B2), since the Krylov subspaces
for the seed and shifted systems are identical, the residuals
|r) and |r,51w'")) must lie in the same space and are collinear.
Therefore, for some scalar ¢(“») € C

|r’(nwin)) — (l/é“,if”i“)) ) s (B4)

which is the collinear equation discussed in Eq. (4).

APPENDIX C: DETAILED PROOF
OF THE ITERATIVE EQUATION

Following Refs. [42,43], we present the derivation of
the MSBiCG algorithm, generalized here for resonant spec-
troscopy problems that involve solving families of shifted
linear systems. As emphasized in the main text, the method
exploits two key properties: the invariance of Krylov sub-
spaces under shifts, and the collinearity of the associated
residuals.

115113-6



ACCELERATING RESONANT SPECTROSCOPY SIMULATIONS ...

PHYSICAL REVIEW B 112, 115113 (2025)

We noticed that solution |W,,) € |¥y) + KC,u(A, |ro)),
where |rg) =|E), and residual |r,)=|E)— A|Y,,) €
Km+1(A, |rg)). Expressing the solution as |¥,) =
Om-1(A) |ry), where Q,_; is a polynomial of degree at
most m — 1 with Q_;(A) = 0, the m™ residual becomes

1) = I — AQy—1 (A} Iro) = Pou(A) o), (CH
where P, (A) =1 — AQ,,_1(A) is the polynomial of degree
at most m with P,,(0) = 1. Substituting Eq. (C1) into Eq. (B4)
and extending to all shifted systems gives

P (A = onl) = (1/5,7 ) Pu(A), (€2)
a general identity that holds for arbitrary .4. Choosing A =
winl yields

glen) = P (o), (C3)

J

,Pm-&-l(A) = _amAPm(A) + <1 +

which provides the fundamental link between the collinearity
coefficient and the polynomial structure of the residuals. This
relation forms the cornerstone for constructing the recurrence
governing the shifted systems.

To make this recurrence explicit, we rewrite Eqgs. (A14) and
(A15) in the alternative formS'

—(Ipm) 17m))s (C4)

IBm
1
_(|rm> -

m

|Pm—1> =

Alpm) = [Fimt1))- (C5)
Substituting into the definition of BiCG residual |r,) =
[Fm—1) — m—1.A |pm—1) leads directly to the three-term resid-

ual recurrence relation for the seed system,

m—1

|rmfl) .

(Co)
The corresponding polynomial recurrence relation is obtained
by substituting Eq. (C1) into Eq. (C6), which reads

|rm+1) = _amA|rm) + <l +

m—1

Applying A = wi,! and Eq. (C3) in Eq. (C7), we get the recurrence relation for collinear coefficients

O

which reproduces Eq. (5) of the main text. Inserting |r,,) = ¢@n) [r{®n)) into Eq. (C6) and reorganizing terms leads to

m+1

(wm)

We can recast Eq. (C9) into the form of seed residual recurrence in Eq. (C6) as

) = A= )+ 14

Recasting this in the BiCG three-term form gives

;. (win) ; (wm )
afnwin ) = ’:lwin ) ®m and ﬁfnwin : = (wm ) ﬁm
§m+ 1 m

)Pm(A) - Pu-1(A). (C7)
Om—1 m—1
am,Bm w; @in
o -, (C8)
amPB (win) a ,3 é-(wm)
mPm _amwm> f(w ) — Zmbon Ent oy (9)
m—1 é‘nHlnl m—1 é‘ﬂHlnl
(wm)ﬂ(wm) a(wm)lg(wan)
m (@in) m m (@in)
@) >|rm ) - o) i) (C10)
m—1 m—1
(C11

Equations (C8)—(C11) hold for m = 0 if we initialize ;f"l’i") = 1. Now, following Egs. (A15) and (A13), the corresponding
updates for search direction and solution vector for multishift systems are generated by equations

[P = (1/25) 1) + B3 | y). (€12)
[} = [95) 4 e i) C13)

Together, the recursions in Egs. (C12) and (C13) constitute the full multishifted BiCG method for constructing intermediate

states in resonant spectroscopy.
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APPENDIX D: MSBiCG ALGORITHM

ALGORITHM 1. Multishift BiCG for resonant spectroscopy.

1:  Require: Matrix A, excited state |E), shift frequencies {wi,},
tolerance €, max iteration M

2:  Initialize: |Wo) = [¥§™) = |0), |ro) = [rg™) = |E),
|po) = |E), and [p“}") = |0)

3 Initialize: £ =1, = l,a_, =1

4: form=0toM do

5: |Un) = A|pn) (matrix-vector multiplication)
6: U = (T ) /(P | V)

T [Wint1) = W) + o | Pm)

8 B = st Pt} / rin| 7o)

9 Ipm-H) = Irm-H> + B |pm>

10: [Fms1) = 1Fm) — O |Um)

11: for each active shift w;, do

12: Gt = (1 + ctyyg ) + b (g lom) — ¢ )
13: o = (G /6,0 ot

14: Bl = (& /5) By

15: Py = (1/65) rn) + B |py))
16: |\llr(rﬂ"l)> — |\.I/r(nwin)> + (@n) |p£7‘1”in))

17: i) = (1680 1)

18: Check convergence

19: end for

20: end for

APPENDIX E: ADAPTIVE RESEEDING STRATEGY

Figure 3(c) in the main text illustrates that a fixed pres-
elected seed can introduce substantial errors when multiple
well-separated resonances contribute comparable intensities.
The source of this problem lies in the accumulation of round-
off errors within the recurrence Eq. (5). While this relation is
exact theoretically, numerical errors gradually build up over
successive Krylov iterations, in a manner analogous to the
loss of orthogonality in the Lanczos three-term recurrence.
As a result, the collinearity condition is satisfied only approx-
imately, and deviations in {,ff"") translate into errors in the
shifted Lanczos coefficients o@n) and B(“n) through Eq. (6).

When the system is dominated by a single pole and the seed
is chosen near that pole, these effects are negligible. In such
cases, the shifted problems have smaller condition numbers
than the seed problem, leading to rapid BiCG convergence
and the irrelevance of the error accumulation. This is evident
from the high accuracy of the spin-flip and spin-conserved
direct RIXS simulations, which show negligible error [see
Figs. 3(a) and 3(b)]. By contrast, when multiple resonances
are widely separated and of comparable intensities, as in
Fig. 3(c), convergence is more demanding. The distant res-
onance requires many Krylov iterations to resolve, but in

1 .
£0.8}| o BiCGStab _
0.6} |— MSBICG ]
E. 0.4} seed #l-\ seed #2 J
g i
20.2} ]
0
15% . : .
lh! L{WJ" '
-159 : - i
*10 -5 0 5 10

incident energy ®;,-Eegge[t]

FIG. 5. (Upper) Comparison of BiCGStab and MSBiCG with the
reseeding strategy applied along the w = 5.47¢ cut of Fig. 3(c). The
two arrows mark the incident energies w;, chosen as seed points.
(Lower) Relative spectral error evaluated near the resonance peaks
along the same cut, plotted as a function of w,.

the MSBiCG framework its Krylov subspace is generated
entirely from the recurrence relations in Eqgs. (5) and (6). The
accumulated round-off error therefore plays a dominant role,
degrading the accuracy and resulting in relative spectral errors
of order ~25%.

To address this issue and ensure the preservation of
collinearity on the numerical level, we introduce an adaptive
reseeding strategy. The procedure begins with an arbitrary
seed selected within the incident-energy interval and updates
it dynamically during the computation by monitoring devi-
ations from residual collinearity. We define this deviation
as Arn) = || [r*)) — |rw) || where ") = |E) — (A ~
winl) [¥@)Y is the true residual and |r(“n)) is MSBiCG-
simulated residual obtained from Eq. (B4). Whenever Ar(©@n)
exceeds a prescribed tolerance, the corresponding wy, is
promoted to serve as the new seed, and the iteration is
restarted from this point. Although computing Ar{®» requires
a matrix—vector multiplication, this cost is incurred only once
per wiy, since the collinearity condition is independent of the
iteration index m. This adaptive reseeding strategy eliminates
the need to predefine a seed (or incident energy) and ensures
consistent accuracy across the spectrum. It also reduces the
number of Krylov iterations by keeping each incident fre-
quency close to its reference seed.

We benchmark this strategy using the indirect RIXS cal-
culation shown in Fig. 3(c) of the main text. With a fixed
seed at w;, = 0, the earlier simulation exhibited a 23% error
at the resonance near wj, ~ —3.6¢. The adaptive reseeding
results, shown in Fig. 5, start with an initial seed at wy, = —4t,
which yields accurate results for —10 < wj, < 0. Beyond this
range, wi, = 0 is automatically promoted as the new seed for
higher incident energies. This dynamic reseeding reduces the
error at both resonance peaks to below 10%, demonstrating its
effectiveness.

[1] D. N. Basov, R. D. Averitt, and D. Hsieh, Towards properties
on demand in quantum materials, Nat. Mater. 16, 1077 (2017).

[2] B. Keimer and J. E. Moore, The physics of quantum materials,
Nat. Phys. 13, 1045 (2017).

115113-8


https://doi.org/10.1038/nmat5017
https://doi.org/10.1038/nphys4302

ACCELERATING RESONANT SPECTROSCOPY SIMULATIONS ...

PHYSICAL REVIEW B 112, 115113 (2025)

[3] F. M. de Groot, M. W. Haverkort, H. Elnaggar, A. Juhin, K.-J.
Zhou, and P. Glatzel, Resonant inelastic x-ray scattering, Nat.
Rev. Methods Primers 4, 45 (2024).

[4] M. Mitrano, S. Johnston, Y.-J. Kim, and M. P. M. Dean, Explor-
ing quantum materials with resonant inelastic x-ray scattering,
Phys. Rev. X 14, 040501 (2024).

[5] M. Mitrano and Y. Wang, Probing light-driven quantum materi-
als with ultrafast resonant inelastic x-ray scattering, Commun.
Phys. 3, 184 (2020).

[6] T. Liu, L. Xu, J. Liu, and Y. Wang, Entanglement witness for
indistinguishable electrons using solid-state spectroscopy, Phys.
Rev. X 15, 011056 (2025).

[7] A. Kotani and S. Shin, Resonant inelastic x-ray scattering
spectra for electrons in solids, Rev. Mod. Phys. 73, 203
(2001).

[8] L. J. P. Ament, M. van Veenendaal, T. P. Devereaux, J. P. Hill,
and J. van den Brink, Resonant inelastic x-ray scattering studies
of elementary excitations, Rev. Mod. Phys. 83, 705 (2011).

[9] G. Ghiringhelli, M. Le Tacon, M. Minola, S. Blanco-Canosa,
C. Mazzoli, N. Brookes, G. De Luca, A. Frano, D. Hawthorn,
F. He et al., Long-range incommensurate charge fluctuations in
(Y,Nd)Ba,Cu3Og¢., Science 337, 821 (2012).

[10] M. Dean, G. Dellea, R. S. Springell, F. Yakhou-Harris, K.
Kummer, N. Brookes, X. Liu, Y. Sun, J. Strle, T. Schmitt
et al., Persistence of magnetic excitations in La,_,Sr,CuQOy,
from the undoped insulator to the heavily overdoped non-
superconducting metal, Nat. Mater. 12, 1019 (2013).

[11] M. Hepting, L. Chaix, E. Huang, R. Fumagalli, Y. Peng, B.
Moritz, K. Kummer, N. Brookes, W. Lee, M. Hashimoto et al.,
Three-dimensional collective charge excitations in electron-
doped copper oxide superconductors, Nature (London) 563, 374
(2018).

[12] H. Lu, M. Rossi, A. Nag, M. Osada, D. Li, K. Lee, B. Wang,
M. Garcia-Fernandez, S. Agrestini, Z. X. Shen et al., Magnetic
excitations in infinite-layer nickelates, Science 373, 213 (2021).

[13] Q. Gao, S. Fan, Q. Wang, J. Li, X. Ren, I. Bialo, A.
Drewanowski, P. Rothenbiihler, J. Choi, R. Sutarto et al.,
Magnetic excitations in strained infinite-layer nickelate PrNiO,
films, Nat. Commun. 15, 5576 (2024).

[14] X. Chen, J. Choi, Z. Jiang, J. Mei, K. Jiang, J. Li, S. Agrestini,
M. Garcia-Fernandez, H. Sun, X. Huang et al., Electronic and
magnetic excitations in LazNi,O;, Nat. Commun. 15, 9597
(2024).

[15] J. Kim, D. Casa, M. Upton, T. Gog, Y.-J. Kim, J. Mitchell, M.
Van Veenendaal, M. Daghofer, J. Van Den Brink, G. Khaliullin,
and B. J. Kim, Magnetic excitation spectra of Sr,IrO, probed by
resonant inelastic x-ray scattering: Establishing links to cuprate
superconductors, Phys. Rev. Lett. 108, 177003 (2012).

[16] J. Pelliciari, S. Karakuzu, Q. Song, R. Arpaia, A. Nag, M.
Rossi, J. Li, T. Yu, X. Chen, R. Peng e? al., Evolution of spin
excitations from bulk to monolayer FeSe, Nat. Commun. 12,
3122 (2021).

[17] J.-N. Zhang, Q. Li, C. Ouyang, X. Yu, M. Ge, X. Huang, E. Hu,
C. Ma, S. Li, R. Xiao et al., Trace doping of multiple elements
enables stable battery cycling of LiCoO, at 4.6 V, Nat. Energy
4, 594 (2019).

[18] F. Mahmood, T. Devereaux, P. Abbamonte, and D. K. Morr,
Distinguishing finite-momentum superconducting pairing states
with two-electron photoemission spectroscopy, Phys. Rev. B
105, 064515 (2022).

[19] W. L. Peticolas, J. P. Goldsborough, and K. Rieckhoff, Double
photon excitation in organic crystals, Phys. Rev. Lett. 10, 43
(1963).

[20] T. P. Devereaux and R. Hackl, Inelastic light scattering from
correlated electrons, Rev. Mod. Phys. 79, 175 (2007).

[21] W.-H. Ko, Z.-X. Liu, T.-K. Ng, and P. A. Lee, Raman signa-
ture of the U(1) dirac spin-liquid state in the spin-1/2 kagome
system, Phys. Rev. B 81, 024414 (2010).

[22] C. Silva de Farias, M.-A. Méasson, A. Ferraz, and S. Burdin,
Effective model for the A,, raman signal in UrU,Si,, Phys. Rev.
B 101, 205114 (2020).

[23] T. P. Devereaux, M. Claassen, X.-X. Huang, M. Zaletel, J. E.
Moore, D. Morr, F. Mahmood, P. Abbamonte, and Z.-X. Shen,
Angle-resolved pair photoemission theory for correlated elec-
trons, Phys. Rev. B 108, 165134 (2023).

[24] K. H. Hsu, C. Jia, E. Z. Zhang, D. Jost, B. Moritz, R. Hackl, and
T. P. Devereaux, Detection of chiral spin fluctuations driven by
frustration in Mott insulators, Phys. Rev. B 111, 205115 (2025).

[25] Y. Wang, M. Claassen, C. D. Pemmaraju, C. Jia, B. Moritz, and
T. P. Devereaux, Theoretical understanding of photon spectro-
scopies in correlated materials in and out of equilibrium, Nat.
Rev. Mater. 3, 312 (2018).

[26] L. J. P. Ament, G. Ghiringhelli, M. M. Sala, L. Braicovich,
and J. van den Brink, Theoretical demonstration of how the
dispersion of magnetic excitations in cuprate compounds can
Be determined using resonant inelastic x-ray scattering, Phys.
Rev. Lett. 103, 117003 (2009).

[27] J. van den Brink, The theory of indirect resonant inelastic x-ray
scattering on magnons, Europhys. Lett. 80, 47003 (2007).

[28] L. Braicovich, L. Ament, V. Bisogni, F. Forte, C. Aruta,
G. Balestrino, N. Brookes, G. De Luca, P. Medaglia, F. M.
Granozio, M. Radovic, M. Salluzzo, J. van den Brink, and G.
Ghiringhelli, Dispersion of magnetic excitations in the cuprate
La,CuQO4 and CaCuO, compounds measured using resonant
x-ray scattering, Phys. Rev. Lett. 102, 167401 (2009).

[29] F. Forte, L. J. Ament, and J. van den Brink, Magnetic excita-
tions in La,CuQ, probed by indirect resonant inelastic x-ray
scattering, Phys. Rev. B 77, 134428 (2008).

[30] E. Dagotto, Correlated electrons in high-temperature supercon-
ductors, Rev. Mod. Phys. 66, 763 (1994).

[31] C. Jia, K. Wohlfeld, Y. Wang, B. Moritz, and T. P. Devereaux,
Using rixs to uncover elementary charge and spin excitations,
Phys. Rev. X 6, 021020 (2016).

[32] Y. Wang, G. Fabbris, M. P. Dean, and G. Kotliar, EDRIXS: An
open source toolkit for simulating spectra of resonant inelastic
x-ray scattering, Comput. Phys. Commun. 243, 151 (2019).

[33] C.-C. Chen, B. Moritz, F. Vernay, J. Hancock, S. Johnston, C.
Jia, G. Chabot-Couture, M. Greven, 1. Elfimov, G. Sawatzky,
T. P. Devereaux, Unraveling the nature of charge excitations in
La,CuO,4 with momentum-resolved Cu K-Edge resonant inelas-
tic x-ray scattering, Phys. Rev. Lett. 105, 177401 (2010).

[34] C. Jia, C. Chen, A. Sorini, B. Moritz, and T. Devereaux, Uncov-
ering selective excitations using the resonant profile of indirect
inelastic x-ray scattering in correlated materials: Observing
two-magnon scattering and relation to the dynamical structure
factor, New J. Phys. 14, 113038 (2012).

[35] C. Jia, E. Nowadnick, K. Wohlfeld, Y. Kung, C.-C. Chen, S.
Johnston, T. Tohyama, B. Moritz, and T. Devereaux, Persistent
spin excitations in doped antiferromagnets revealed by resonant
inelastic light scattering, Nat. Commun. 5, 3314 (2014).

115113-9


https://doi.org/10.1038/s43586-024-00322-6
https://doi.org/10.1103/PhysRevX.14.040501
https://doi.org/10.1038/s42005-020-00447-6
https://doi.org/10.1103/PhysRevX.15.011056
https://doi.org/10.1103/RevModPhys.73.203
https://doi.org/10.1103/RevModPhys.83.705
https://doi.org/10.1126/science.1223532
https://doi.org/10.1038/nmat3723
https://doi.org/10.1038/s41586-018-0648-3
https://doi.org/10.1126/science.abd7726
https://doi.org/10.1038/s41467-024-49940-4
https://doi.org/10.1038/s41467-024-53863-5
https://doi.org/10.1103/PhysRevLett.108.177003
https://doi.org/10.1038/s41467-021-23317-3
https://doi.org/10.1038/s41560-019-0409-z
https://doi.org/10.1103/PhysRevB.105.064515
https://doi.org/10.1103/PhysRevLett.10.43
https://doi.org/10.1103/RevModPhys.79.175
https://doi.org/10.1103/PhysRevB.81.024414
https://doi.org/10.1103/PhysRevB.101.205114
https://doi.org/10.1103/PhysRevB.108.165134
https://doi.org/10.1103/PhysRevB.111.205115
https://doi.org/10.1038/s41578-018-0046-3
https://doi.org/10.1103/PhysRevLett.103.117003
https://doi.org/10.1209/0295-5075/80/47003
https://doi.org/10.1103/PhysRevLett.102.167401
https://doi.org/10.1103/PhysRevB.77.134428
https://doi.org/10.1103/RevModPhys.66.763
https://doi.org/10.1103/PhysRevX.6.021020
https://doi.org/10.1016/j.cpc.2019.04.018
https://doi.org/10.1103/PhysRevLett.105.177401
https://doi.org/10.1088/1367-2630/14/11/113038
https://doi.org/10.1038/ncomms4314

SHARMA, XU, XUE, AND WANG

PHYSICAL REVIEW B 112, 115113 (2025)

[36] For general systems, constructing a dual Krylov subspace £,
alongside the primary Krylov subspace K, is necessary, in-
troducing additional MVMs and requiring the use of BiCG
algorithms. However, when the Hamiltonian # is a real sym-
metric, as is typically the case, the two subspaces can be derived
from one another with negligible computational overhead. As a
result, within the scope of this paper, we do not explicitly distin-
guish between BiCG and CG/MINRES frameworks, since the
algorithm choice naturally follows from the real valuedness and
symmetry properties of the system. Further details are provided
in the Supplementary Materials.

[37] T. D. Kiihner and S. R. White, Dynamical correlation functions
using the density matrix renormalization group, Phys. Rev. B
60, 335 (1999).

[38] A. Nocera and G. Alvarez, Spectral functions with the density
matrix renormalization group: Krylov-space approach for cor-
rection vectors, Phys. Rev. E 94, 053308 (2016).

[39] U. Kumar, A. Nocera, E. Dagotto, and S. Johnston, Multi-
spinon and antiholon excitations probed by resonant inelastic
x-ray scattering on doped one-dimensional antiferromagnets,
New J. Phys. 20, 073019 (2018).

[40] A. Nocera, U. Kumar, N. Kaushal, G. Alvarez, E. Dagotto,
and S. Johnston, Computing resonant inelastic x-ray scattering
spectra using the density matrix renormalization group method,
Sci. Rep. 8, 11080 (2018).

[41] H. A. van der Vorst and J. B. Melissen, A petrov-galerkin type
method for solving Ak = B, where a is symmetric complex,
IEEE Trans. Magn. 26, 706 (1990).

[42] A.Frommer, BiCGStab(/) for families of shifted linear systems,
Computing 70, 87 (2003).

[43] J. Meng and H. Li, Recycling bicg for families of shifted linear
systems, in 2015 11th International Conference on Computa-
tional Intelligence and Security (CIS) (IEEE, Piscataway, NJ,
2015), p. 86.

[44] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK Users’
Guide: Solution of Large-Scale Eigenvalue Problems with
Implicitly Restarted Arnoldi Methods (SIAM, Philadelphia,
1998).

[45] C. Jia, Y. Wang, C. Mendl, B. Moritz, and T. Devereaux,
Paradeisos: A perfect hashing algorithm for many-body eigen-
value problems, Comput. Phys. Commun. 224, 81 (2018).

[46] D. Betts, H. Lin, and J. Flynn, Improved finite-lattice estimates
of the properties of two quantum spin models on the infinite
square lattice, Can. J. Phys. 77, 353 (1999).

[47] Y. Wang, Y. He, K. Wohlfeld, M. Hashimoto, E. W. Huang, D.
Lu, S.-K. Mo, S. Komiya, C. Jia, B. Moritz et al., Emergence
of quasiparticles in a doped Mott insulator, Commun. Phys. 3,
210 (2020).

[48] J. van den Brink and M. Van Veenendaal, Correlation func-
tions measured by indirect resonant inelastic x-ray scattering,
Europhys. Lett. 73, 121 (2006).

[49] The BiCGStab algorithm enhances the standard BiCG approach
by introducing a gradient stabilization mechanism, accelerat-
ing convergence and further reducing the actual speedup from
the ideal 2n. To ensure a fair benchmark against the best-
performing algorithms currently available for resonant spectral
simulations, we compare MSBiCG with BiCGStab throughout
this paper.

[50] P. Sharma, Y. Wang, L. Xu, and F. Xue, Data for MSBiCG
(2025), doi:10.6084/m9.figshare.29972677.v1.

115113-10


https://doi.org/10.1103/PhysRevB.60.335
https://doi.org/10.1103/PhysRevE.94.053308
https://doi.org/10.1088/1367-2630/aad00a
https://doi.org/10.1038/s41598-018-29218-8
https://doi.org/10.1109/20.106415
https://doi.org/10.1007/s00607-003-1472-6
https://epubs.siam.org/doi/pdf/10.1137/1.9780898719628.fm
https://doi.org/10.1016/j.cpc.2017.11.011
https://doi.org/10.1139/p99-041
https://doi.org/10.1038/s42005-020-00480-5
https://doi.org/10.1209/epl/i2005-10366-9
https://doi.org/10.6084/m9.figshare.29972677.v1

