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ACCESSIBLEOVERVIEW In correlatedmaterials, strong quantum fluctuations hamper conventional spectral
diagnosis of phase transitions, as the usual ‘‘energy gap’’ no longer serves as a reliable marker. Focusing on
the superconductivity transition in such materials, this study employsmachine-learning models to parse sin-
gle-shot photoemission spectra and accurately pinpoint long-range superconducting order. The model rec-
ognizes subtle spectral cues invisible to gap-based analysis, unveiling the authentic transition even under
heavy fluctuations. This approach enables rapid, non-contact detection of emergent phases in quantumma-
terials, fueling fundamental exploration of strongly correlated systems and expediting the discovery of next-
generation superconductors. Additionally, the authors introduce a domain-adversarial framework that
merges large-scale simulation data withminimal experimental data, providing a robust solution to the persis-
tent shortage ofmeasurements in scientificmachine learning. Together, these advances open newdirections
for understanding and harnessing complex quantum many-body states and phase transitions in quantum
materials.
SUMMARY
Identifying thermodynamic signatures of electronic phases, such as superconductivity, is challenging in low-
dimensional materials due to strong fluctuations and low probing volume. Spectroscopic methods are often
used to identify new bulk phases, but their main measurable quantity—electronic energy gaps—is no longer
an effective order parameter in low-dimensional and fluctuating systems. Combining angle-resolved photo-
emissionwith a domain-adversarial neural network, we report a data-drivenmethod to identify thermodynamic
phase transitions solely based on single-particle spectra. We demonstrate 97.6% accuracy in cuprate super-
conductor Bi2Sr2CaCu2O8+d with strong superconducting fluctuations. This model notably compensates for
the scarcity of experimental data by leveraging virtually inexhaustible simulated data. Further, its explainability
reveals the crucial role of in-gap spectral weight in detecting phase fluctuations and thermodynamic transi-
tions. Our work pinpoints the spectroscopic signatures of fluctuating orders and enables using spectroscopy
for machine-learning-assisted material discovery for low-dimensional and strong coupling systems.
INTRODUCTION

New states of matter are typically identified by the emergence of

long-range order via a thermodynamic phase transition. As the

system crosses the critical temperature Tc, singularities in prop-

erties like correlation length and specific heat clearly delineate

the transition between the ordered (broken-symmetry) phase
Newton 1, 100066,
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and the normal (high-symmetry) phase. Traditional thermody-

namic probes, such as calorimetry and dilatometry, rely on

bulk material measurements and generally lack spatial resolu-

tion, making them unsuitable for the characterization of thin

van der Waals materials or wafer-scale epitaxial materials. In

contrast, electron or optical spectroscopy can be employed to

measure the energy gap D (Figure 1A), which serves as an
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Figure 1. Schematic illustration of thermo-

dynamic phase transition with pronounced

fluctuations

(A) At low temperatures (red), the material exhibits

a nonzero order parameter CDDs0 and a well-

defined single-particle gap. As the temperature

increases above Tc (green), the local excitations

lose long-range coherence, and the average order

parameter CDD = 0. However, the system still

displays pronounced fluctuations with a non-

negligible CD2D, leading to a finite single-particle

gap. These short-range fluctuations gradually

diminish with further temperature increase, ulti-

mately resulting in a normal state (blue).

(B) The domain discrepancy between the scarce,

noisy experimental data and the abundant, ideal-

ized simulated spectra.
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indicator of long-range order under the mean-field approxima-

tion.1 Unlike thermodynamic probes, spectroscopy offers the

advantages of being non-contact, compatible with in situ and

operando measurements, and able to resolve down to micron-

level spatial precision in a high-throughput manner.2,3 However,

many low-dimensional and correlated materials exhibit signifi-

cant quantum fluctuations in the normal state.4–7 Here, the global

symmetry is preserved ðCDD = 0Þ, but the spectral gap already

opens ðCD2Ds0Þ, which severely undermines the effectiveness

of spectroscopy in distinguishing phases.8,9 In these situations,

the traditional spectroscopic approach obtains the gap-opening

temperature (denoted as Tgap), which may deviate substantially

from the actual thermodynamic transition.4,5,7,10–13

Superconductivity (SC) in low-dimensionalmaterials servesasa

prime example of how fluctuations can complicate the identifica-

tion of thermodynamic transitions through spectroscopy. In a

well-defined SC phase, global phase coherence among Cooper

pairs eliminates electrical resistance, establishing long-range or-

der. Under mean-field approximations, the emergence of the SC

phase is linked to a single-particle gap that is generally twice the

size of the order parameter. Thus, in scenarios where direct trans-

port measurements are not feasible—such as in ultrathin films,

functionalizedsurfaces, non-equilibriumsystems,or extremecon-

ditions—the presence of this gap often serves as a fingerprint of

SC.10,14,15 However, in correlated materials like cuprates and

monolayer FeSe, quantum and thermal fluctuations disrupt

the straightforward relationship between the energy gap

and the SC phase, causing a pronounced separation between

Tgap and Tc.
4,5,12,13 Intriguingly, recent studies suggest that

angle-resolved photoemission spectroscopy (ARPES) could
2 Newton 1, 100066, May 5, 2025
provide insights into SC phase coher-

ence,5,6,16 implying that electronic

spectra encode many-body information

far beyond mean-field descriptions. How-

ever, extracting this information remains

extremely challenging, requiring material-

specific experimental setups, extensive

measurements, and detailed tempera-

ture-dependent analysis of quasiparticle

spectra. The difficulty reflects the pressing
need todevelop ageneralmethodcapable of reliablyprobing ther-

modynamic phase transitions and the spectral signatures of fluc-

tuating orders with limited experimental data.

Here, we develop a machine-learning (ML) model to directly

classify actual thermodynamic phase transitions from individual

ARPES spectra without needing extensive experimental data or

temperature-dependent analysis. One of the core obstacles in

applying artificial intelligence (AI) to materials science is the scar-

city of labeled experimental data, a ubiquitous issue across scien-

tific fields.17 While most modern ML techniques rely heavily on

large datasets, ARPES spectra are particularly challenging to ac-

quire in sufficient quantities due to the inherent complexity of the

experiments and the lack of standardized data curation pro-

cesses. One potential solution is to generate training data through

simulations, enabling efficient exploration of parameter space in

silico.18 However, simulated data, even when augmented with

synthetic noise, fall short of replicating real-world experimental

noise, resolution constraints, and lab-specific variability (see Fig-

ure 1B), leading to poor performance when applying simulation-

trained models to actual experimental data. To address this

experiment-simulation discrepancy, we employ an adversarial

training strategy to ensure that the ML model learns classification

rules transferable between simulated and experimental ARPES

spectra. By leveraging this approach, our model accurately clas-

sifies SC states without needing labeled experimental data during

training. Furthermore, occlusion-based attribution analysis re-

veals that the spectral weight distribution near the Fermi level,

rather than simply detecting the presence of a gap, is key in dis-

tinguishing between SC and normal phases. This approach pro-

vides a pathway for integrating simulated single-particle functions



Figure 2. Model architecture

Left to right: consecutive convolutional stacks as the feature extractor convert the ARPES spectrum (using experimental data for BSCCO OD58 as an example)

into feature maps with various convolutional kernels. A pooling layer and activation are then applied to compress the feature maps and pass the data to the next

layer. After four convolutional layers, the feature maps are pooled and flattened and then directed into two distinct fully connected neural networks: the phase

classifier (blue) classifies the spectra into the superconducting (SC) and normal phases. The domain classifier (pink) classifies the sample source either from

simulation or experiment. It connects to the feature extractor via a gradient reversal layer that multiplies the gradient by a certain negative constant during the

backpropagation (dashed line). The number and size of each layer plotted in this figure are for illustrative purposes. The color scale bar (bottom left) indicates the

spectral intensity of the input ARPES spectra, ranging from minimum (blue) to maximum (white).
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with experimental ARPES spectra via ML, with broader applica-

tions in the study of thermodynamic phase transitions in quantum

materials where labeled experimental data are scarce.

RESULTS

Model setup and ARPES data curation
A typical ARPES spectrum collected along a fixed momentum

cut is shown in Figure 1B. The spectral weight distribution along

the horizontal and vertical axes reflects the momentum and en-

ergy of a single electron inside the material. Convolutional neural

networks (CNNs) are specifically suited to analyze ARPES

spectra because the convolution operation can preserve the

two-dimensional (2D) structure of momentum-energy informa-

tion instead of flattening the spectrum into a vector (see Note

S1 and Figure S1 for details). However, standard CNN models’

performance can be significantly hampered by the ‘‘domain

shift’’ issue in our case—the training data (simulated spectra)

and test data (experimental spectra) are from different sources.

Hence, we need to use a modified CNN version, the domain-ad-

versarial neural network (DANN),19 to facilitate cross-domain

learning. In this work, as illustrated in Figure 2, we adapt a

DANN architecture that consists of three main components: a

feature extractor, a domain classifier, and a phase classifier.

The feature extractor, implemented through convolutional

layers, extracts feature representations from both simulated and

experimental ARPES spectra. These representations are then

passed to the phase classifier, which predicts the material phase

as either SC or normal. During training, the model parameters of

the feature extractor and the phase classifier are optimized by

minimizing the phase label classification loss. The additional

domain classifier addresses the domain shift issue through an ad-

versarial training process, encouraging the network to discover

domain-invariant latent representations shared between simu-
lated and experimental spectra. Specifically, the domain classifier

determines whether the extracted features originate from the

simulated or experimental data by minimizing the cross-entropy

loss, while the feature extractor is trained to confuse the domain

classifier (see domain adaptation in the methods). Upon comple-

tion ofDANN training, themodel is able to classify any single simu-

lated or experimental ARPES snapshot.

Notably, to work with limited experimental data, the super-

vised learning of this phase classifier is entirely guided by simu-

lated spectra with phase labels. However, unlabeled experi-

mental spectra are used to train the domain classifier to ensure

that a robust latent representation is learned by the feature

extractor. Since the adversarial training process ensures domain

transferability, the predicted phase labels for experimental data

are expected to reflect the true material phases, even without

direct supervision during training.

The experimental ARPES spectra were collected from two cup-

rate samples: a super-oxygenated Bi2Sr2CaCu2O8 (BSCCO) with

Tc = 50 K (OD50) and an oxygenated BSCCO with Tc = 58 K

(OD58) (see details of experimental determination of Tc in Note

S6). A total of 41 and 45 spectra are measured in these two sam-

ples, respectively, spanning a temperature range of 14–102 K,

covering both SC and normal phases (reused from He et al.5,20).

Superconducting gap extraction is conducted with the traditional

spectral fittingmethod tobenchmark the performance and advan-

tage of the new method here (see Note S5 and Figures S7, and

S8). All labeled training data are generated through simulations

following themethod outlined in simulated ARPES data. A uniform

background removal process is applied to both the simulated

and experimental datasets (see supplemental methods and Fig-

ure S5 for details). Figure 3A presents four spectra taken from

the OD50 sample after the background removal. Notably, while

SC disappears when the temperature exceeds Tc = 50 K, the

single-particle gap remains open until Tgap = � 65 K.20
Newton 1, 100066, May 5, 2025 3
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Figure 3. Classification of superconducting

phase using the DANN model

(A) Experimental ARPES spectra for the BSCCO

OD50 sample at four different temperatures, with

dashed lines denoting the Fermi level. The top and

bottom bars indicate the phase labels, indepen-

dently determined by experiments and invisible to

the ML model, and the gap sizes. The color scale

bar indicates spectral intensity, ranging from

minimum (blue) to maximum (white).

(B and C) Confusion matrices obtained for binary

classification of the ARPES spectra collected from

(B) BSCCO OD50 and (C) OD58 samples at

various temperatures, yielding accuracies of

97.6% and 97.8%, respectively.

(D and E) The ML-predicted SC probability pSC for

spectra obtained from the (D) BSCCO OD50 and

(E) OD58 samples, respectively. The pSCs are

calculated for each spectrum but are sorted here

by their experimental temperatures, which are

unknown to the ML model. The classification is

based on whether pSC exceeds 0.5. Correctly

classified spectra are denoted by solid red and

blue dots, while misclassified data are depicted by

open dots. The red and blue lines indicate exper-

imentally determined transition temperature Tc

and gap-opening temperature Tgap (both invisible

to the ML model), respectively.
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Superconducting phase classification
The trained DANN model is applied to classify superconducting

phases in BSCCOOD50 and OD58 experimental spectra, where

the pronounced fluctuating gap has long hindered the spectral

characterization of the superconducting phase with traditional

spectroscopy methods.5 As shown in Figures 3B and 3C, the

model’s predictions are represented by a scalar ‘‘SC probability’’

pSC for each input spectrum. Such a pSC is obtained from an

ensemble approach, where the pSC for each spectrum is the

averaged pSC over 10 different DANNmodels with various initial-

izations. Normalized by the sum rule, a sample corresponding to

an input spectrum is predicted as SC when pSC exceeds 50%.

For the BSCCO OD50 sample, only one spectrum measured in

the normal phase is misclassified as SC. Conversely, all other

40 experimental spectra are correctly classified, yielding an ac-

curacy of 97.6%. The performance is similar for the OD58 sam-

ple, where only one spectrum in the SC state is misclassified.

As the experimental spectra are obtained for two material sam-

ples at different temperatures, we further analyze the predicted

pSC as a function of temperature in Figures 3D and 3E. Although

our ML model independently classifies each ARPES spectrum

anddoesnot haveaccess to temperature information,weobserve

a roughly monotonic relationship between pSC and the actual
4 Newton 1, 100066, May 5, 2025
temperature T. The overall shape of the

pSCðTÞ resembles an inverted sigmoid

function: it shows constantly high values

(close to 1) at low temperatures and low

values (close to 0) at high temperatures,

with a rapid transition from 1 to 0 near

the experimentally determined Tc. The

only misclassified data point in each
of Figures 3D and 3Ecorresponds to a samplemeasured at a tem-

perature close to Tc. Given that none of the experimental spectra

are labeled in ML, the monotonic decrease in the predicted prob-

ability with increasing temperature indicates that our model has

successfully captured the thermodynamic phase transition en-

coded in the details of ARPES spectra. Interestingly, the predicted

pSC does not exhibit any anomaly near the Tgap. This is in stark

contrast to traditional superconducting spectral gap fitting results,

which are instead only sensitive to Tgap and, furthermore, suffer a

rapidly exacerbating stability issue above Tc (see Note S5 and

Figures S7 and S8). These observations reflect that the gap open-

ing is not the sole or even the primary indicator of a thermody-

namic phase transition inmany quantummaterials. Instead, spec-

tral distributions beyond the band dispersion contain extensive

information about the emergence of long-range order associated

with this phase transition.

It is worth noting that the simulated and experimental ARPES

spectra exhibit fundamental differences, as shown in Figure 1B,

due to the simplicity of the single-band model and unreplicable

experimental noise. Thus, the domain adaptation technique is

crucial in bridging the gap between the simulated training spectra

and experimental test spectra, hence ensuring our ML phase

classifier’s high accuracy. Without the adversarial training
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Figure 4. t-SNE visualization of feature dis-

tributions

(A) The distribution of the feature extractor’s acti-

vations of the CNN model without domain adap-

tation.

(B) The distribution of feature extractor’s activa-

tions of the CNN model when the adaptation

procedure is incorporated into training. Light blue

and red colors indicate the simulated spectra

belonging to normal or SC phases, respectively,

while dark colors represent experimental spectral

data.
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enabled by the domain classifier, the CNN model yields a repre-

sentation space where the simulated and experimental spectra

occupy distinct regions of the latent space, as visualized by the

t-distributed stochastic neighbor embedding21 (t-SNE) in Fig-

ure 4A. This separation reflects the intrinsic differences between

simulated and experimental data in this representation. As a

result, the phase classification rules learned from the simulated

spectra are not directly applicable to experimental spectra. In

contrast, the domain classifier in DANN ensures a better repre-

sentation is learned to capture the underlying physics rather

than the apparent differences, significantly enhancing the align-

ment between simulated and experimental spectra in the repre-

sentation space (see Figure 4B). Consequently, the DANN pro-

vides transferable phase classification rules between simulated

and experimental spectra, and the classification results show

substantial improvements by 19.0% and 19.2% in the average

accuracy on the BSCCO OD50 and OD58 samples, respectively

(see Note S2 and Tables S1 and S2).

Physical explanation of the ML model
Beyond classifying SC from ARPES spectra, we also aim to

extract interpretable physical intuitions from the ML model to

deepen our understanding of quantummaterials and, especially,

identify single-particle spectral features directly linked to a ther-

modynamic phase transition. Specifically, we exploit an occlu-

sion-based analysis for the ML model to identify which single-

particle spectral features are linked to the SC long-range order.22

The occlusion-based analysis measures the impact of a specific

data feature on amodel’s output when that feature gets blocked.

In the context of analyzing ARPES spectra, the occlusion is real-

ized by blocking a region of the spectral function information via

an energy-resolved occluding patch. The occluded spectrum,
~Aðk;u; nÞ, of the original spectrum, Aðk;uÞ, is defined as

~Aðk;u; nÞ = Aðk;uÞ+ dðu � nÞ½A0ðk; nÞ � Aðk; nÞ�:
(Equation 1)

Here, A0ðk; nÞ is a single baseline spectrum at energy n, which

provides the spectral function value in the occluded region.

Following recent feature attribution studies,23,24 we set
A0ðk; nÞ as the training distribution to

ensure robust explanation performance

across different pixel intensities (see de-
tails in supplemental methods and Figure S4). The change in the

predicted probability before and after occlusion is usually

referred to as saliency. By shifting the occluding patch in Equa-

tion 1 along the energy axis, we can determine the saliency for

each spectrum sample as a function of energy n:

SSCðnÞ = maxf0;pSC½Aðk;uÞ� � pSC½ ~Aðk;u; nÞ�g;
(Equation 2)

where pSC½ $� represents the ML model mapping from an input

ARPES spectrum to the predicted pSC. To focus on features

that positively contribute to the classification, negative saliency

values are filtered out by a rectified linear unit (ReLU) function25

(the max operation in Equation 2).

As shown in Figure 5, we obtain the saliency as a function of

binding energy for each spectrum in both the BSCCO OD50

and OD58 experimental datasets. A notable feature across

various spectral samples is a pronounced peak at zero energy

ðn = 0Þ. Remarkably, the saliency magnitude significantly de-

creases for spectra acquired at temperatures above Tc. This

observation suggests that the ML model identifies the nuanced

distribution of spectral weight near and above the gap center as

the key for pinpointing the true Tc. The spectral weight just above

the gap center is particularly sensitive to the upper branch forma-

tion of theBogoliubovquasiparticles, whose clear separation from

the lower branch is amajor empirical identifier of superconducting

phase ordering in cuprates.5 In an intriguing parallel, a recent

study inferred electronic entropy from a continuous sequence of

ARPES spectra, achieved through meticulous temperature and

energy calibration.6 This study deduced that the temperature de-

rivative of the weighted in-gap spectral intensity near the Fermi

level could effectively determine the Tc. Our MLmodel’s explana-

tion aligns with this conclusion. However, different from the tem-

perature-derivative approach, the ML classification and the sa-

liency analysis operate on each individual spectrum without

relying on temperature-dependent information. The experimental

data, used solely for domain alignment, remain unlabeled. This

single-snapshot-based classification approach is particularly

valuable for general materials design, where exhaustive param-

eter tuning and sequential measurements are impractical, such

as under extreme or non-equilibrium conditions.
Newton 1, 100066, May 5, 2025 5
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Figure 5. Saliency distribution for experi-

mental spectra

(A) A sample ARPES spectrum obtained from

BSCCO OD50 at 38 K (superconducting phase).

The color scale bar indicates the spectral intensity,

ranging from minimum (blue) to maximum (white).

(B) The saliency values across various binding

energies and temperatures for the BSCCO OD50

sample, quantifying the sensitivity of the ML pre-

diction for each energy. The color scale bar in-

dicates positive saliency, from low (white) to high

(black).

(C) An ARPES spectrum from BSCCO OD58 at 34

K (superconducting phase). The color scale bar

represents the spectral intensity, as in (A).

(D) Saliency values for the BSCCO OD58 sample.

The color scale is the same as in (B). Gray dashed

lines denote the Fermi level, while red and blue

lines indicate the Tc and Tgap, as independently

determined by experiments.
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Ternary state classification
We now turn to investigate the fluctuating superconducting (fluc-

SC) regime within the normal state. This regime is characterized

by pronounced short-range Cooper pair fluctuations, manifest-

ing as a single-particle gap comparable to that observed below

Tc.
4,5,12,13 To further assess the robustness of our model and

method, we expand the classification task to include three

states: SC, fluc-SC, and gapless non-SC states. Specifically,

we re-label simulated spectral data to reflect these three states

and retrain the DANN model while keeping the experimental

data unlabeled. This model is then applied to individual

ARPES experimental spectra to distinguish whether the corre-

sponding sample material is in the SC, fluc-SC, or gapless

non-SC state.

As shown in Figure 6, the spectra stemming from the SC and

gapless non-SC states are still correctly classified under this

ternary classification. However, distinguishing the fluc-SC phase

presents greater challenges, resulting in an overall accuracy of

85.4%for theBSCCOOD50sampleand75.6%for theOD58sam-

ple. An interesting observation is that the majority (15 out of 17) of

gapped fluc-SC states are misclassified as gapless non-SC,

despite the presence of a gap, which is traditionally considered a

fingerprint of long-range order. Instead, our ternary classification

results correctly identify the inherent similarities between gapped

fluc-SC and gapless non-SC states, both of which exist above

Tc in the normal state. This result suggests that traditional single-

particle spectroscopy,which relies heavily ongapdetection, over-

simplifies the complexities of fluctuating states to a single gap

value. The gapped fluc-SC state and the gapless non-SC

state are inherently a crossover, which also proves more

difficult to distinguish compared to the detection of true SC long-
6 Newton 1, 100066, May 5, 2025
range (phase)ordering.Although theaccu-

racy decreases for the fluc-SC phase,

domain adaptation remains crucial in

improving performance. It enhances the

accuracy of the phase classification by

more than 10% and 30% compared to a
traditional CNN with (Table S1) and without (Table S2) ensemble

averaging, respectively.

DISCUSSION

Our study demonstrates that a transferable ML model, trained

without labeled experimental data, effectively classifies the

SC of strongly correlated materials based on a single-snapshot

ARPES spectrum. This breakthrough suggests a powerful new

tool for identifying thermodynamic phase transitions and long-

range orders from electronic spectroscopy, even when the

deterministic features do not conform to traditional gap anal-

ysis. The model’s transferability between simulation and exper-

iment is demonstrated through its accurate classification of

ARPES spectra from two materials with different compositions,

gap sizes, and bare band dispersions and that are measured at

a variety of temperatures. This pre-trained model is also ex-

pected to accurately classify other superconducting materials

similar to cuprates in a traditional inductive manner (see Note

S3 and Tables S3 and S4 for details). For materials significantly

different from cuprates, accurate classifications can still be

achieved through transductive learning by fine-tuning the

model with corresponding unlabeled experimental spectra. In

both cases, our model bypasses the need for tracking temper-

ature-dependent trends, thereby enabling non-contact, in situ,

and operando characterization of SC in correlated materials,

with potential in pump-probe spectra where phases lose

coherence.26–28

Furthermore, the physical intuition gained from the MLmodel,

revealed through occlusion-based attribution analysis, closely

matches the recent conclusion from temperature-dependent



A B

C D

Figure 6. Ternary classification results for

two BSCCO samples

(A) Predicted probability in the ternary graph for

superconducting (red), fluctuating super-

conducting (green), and gapless non-super-

conducting (blue) phases using the DANN model

for experimental spectral data measured in the

BSCCOOD50 sample. The proximity of each point

to each vertex represents the probability for the

corresponding phase, while the color reflects its

true label determined by experiments.

(B) Confusion matrix for the ternary classification

in (A).

(C and D) Same as (A) and (B) but for BSCCO

OD58 samples.
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analysis.6 Our approach fits with the growing emphasis on

transfer learning29,30 and domain adaptation techniques31,32 in

scientific applications to overcome data scarcity. Despite the

unique challenges compared to existing efforts, including fewer

available experimental data, a larger discrepancy between

simulation and experiment, and more complicated underlying

patterns, our model achieves impressive results in classifying

SC in quantum materials, with the potential to classify other

thermodynamic phase transitions after retraining with new

simulated data generated from relevant phenomenological

equations. Our model paves the way for high-throughput mate-

rials design and synthesis experiments that require immediate

characterizations.33
METHODS

Simulated ARPES data
ARPES data simulations are based on the phenomenological

model described in He et al.,5 which applies to a broad range
of superconducting materials.16,34–36 The spectral function

used in the simulation is given by

Aðk;uÞ = Ek+εkffiffiffiffiffiffi
8p

p
sEk

e
�ðu+EkÞ2

2s2 +
Ek � εkffiffiffiffiffiffi
8p

p
sEk

e
�ðu�EkÞ2

2s2 ; (Equation 3)

where Ek =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ε
2
k+D

2
k

q
is the Bogoliubov quasiparticle dispersion,

Dk is the momentum-dependent SC order parameter, and s is

the spectral broadening.

The superconducting order parameterDk is determined by the

general band BCS gap equation, with an approximate closed-

form solution over the entire temperature range:

DkðTÞ = Dkð0Þtanh
�
2:34

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tgap

�
T � 1

q �
: (Equation 4)

Here, Tgap denotes the superconducting pairing onset tempera-

ture, while Tc is the thermodynamic transition temperature. Both

parameters are randomly sampled in the simulations to enhance

model transferability (see Note S4 and Figure S2).6,20 States be-

tween Tc and Tgap are labeled as fluc-SC. The coefficient 2.34 in

Equation 4 is specific to d-wave superconductors and may
Newton 1, 100066, May 5, 2025 7
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slightly vary for different Fermi-surface geometries.37 However,

as it simply rescales temperature, which remains hidden in

DANN training, its value is fixed in the simulated dataset without

compromising transferability.

The spectral width sðu;TÞ is modeled to reflect realistic energy

and temperature dependencies, ensuring alignment with exper-

imentally observed values (in eV and kelvins):

sðu;TÞ = 0:028 + 5:56 3 10� 7T2 + 5u2

+ 0:01 tanh½5ðT =Tc � 1Þ�: (Equation 5)

These dependencies account for electronic self-energy

within a Fermi-liquid framework1 and additional broadening

due to phase-mode scattering above Tc:
4–6 To enhance trans-

ferability across different superconducting materials and

experimental conditions, the resulting spectra, after applying

the theoretical broadening in Equation 5, undergo convolution

with a resolution function whose parameters are randomly

sampled. The energy-momentum resolution is implemented

as a 2D Gaussian convolution on the 2D spectral function,

with a typical momentum resolution of 10-pixel size (see

Note S4).

The background is treated as 10 times the average per-pixel

intensity across the simulated cut multiplied by the Fermi func-

tion, which mimics the momentum-scrambling secondary scat-

tering process in photoemission. Since we are mostly in the in-

termediate- to high-count-rate regime, the noise distribution is

approximated as a Gaussian with a standard deviation of

a
ffiffiffiffiffiffi
Nij

p
, where Nij is the simulated count at pixel fi; jg and a is

an input parameter to control the signal-to-noise ratio. This

approximation mimics the Poisson noise observed in real ex-

periments, which is generally in the high-count-rate regime

and asymptotically approaches a Gaussian noise. The entire

spectrum takes an absolute value to eliminate negative counts

due to the application of Gaussian noise at extremely low-count

regimes, which has a negligible impact on the main spectral re-

gion of interest. A comparison of the parameter space of simu-

lated and experimental data can be found in Note S3. A total of

1,745 simulated spectra were obtained, with 80% (1,395) being

utilized as training data.

Domain adaptation
DANN is a domain adaptation technique designed to reduce the

domain shift between the source (simulated) and target (exper-

imental) domains. The model architecture comprises three

parts as shown in Figure 2: the feature extractor ðGf ð$; qf ÞÞ
with parameters qf , the phase classifier (Gyð$; qyÞ) with parame-

ters qy, and the domain classifier (Gdð$; qdÞ) with parameters qd.

Training DANN involves minimizing the phase classification loss

using labels from the source domain while simultaneously

encouraging the feature extractor to learn domain-invariant fea-

tures through adversarial training (see detailed illustrations of

forward- and back-propagation flow in Figure S6). This is

achieved using a gradient reversal layer (GRL) (denoted as

Rð $Þ) placed between the feature extractor and the domain

classifier. The GRL acts as an identity transformation during for-

ward propagation but flips the sign of vLd=vqf during backpro-
8 Newton 1, 100066, May 5, 2025
pagation, effectively making the feature extractor maximize the

domain classification loss while the domain classifier minimizes

it. We define Ly and Ld as the corresponding cross-entropy

loss38 for label prediction and domain classification, respec-

tively. The general form of the cross-entropy loss for a classifi-

cation task is

Lðp; yÞ = �
XK
k = 1

yk log pk ; (Equation 6)

where K is the number of classes, p is the predicted probability

vector for each class, and y is the one-hot-encoded true label

vector. Applying this to our specific losses, the phase classifica-

tion loss for a single sample with true phase label y˛ f0; 1g and

predicted probability pSC is defined as

LyðpSC; yÞ = � y logðpSCÞ � ð1 � yÞlogð1 � pSCÞ:
(Equation 7)

For domain labels d˛ f0;1g (with d = 0 for the source domain

and d = 1 for the target domain) and with ptarget being the pre-

dicted probability that a sample is from the target domain, the

domain classification loss is defined as

Ld

�
ptarget;d

�
= � d log

�
ptarget

� � ð1 � dÞlog�1 � ptarget

�
:

(Equation 8)

The training objective for the whole DANN is formulated as

follows:

E
�
qf ; qy; qd

�
= Eðxsi ;ysi Þ�Ds

Ly

�
Gy

�
Gf

�
xs
i ; qf

�
; qy

�
; ysi

�

+ l
�
Exs

i
�DsLd

�
Gd

�
R
�
Gf

�
xs
i ; qf

��
; qd

�
;ds

�

+ Ext
j
�Dt

Ld

�
Gd

�
R
�
Gf

�
xt
j ; qf

��
; qd

�
;dt

��
;

(Equation 9)

where E represents the expected value; xsi denotes a simulated

spectrum with phase label ysi from the source domain Ds =

fðxsi ; ysi Þgnsi = 1; x
t
j denotes an experimental spectrum in the target

domain Dt = fðxtj Þgntj = 1; and ds and dt are the domain labels.

Here, l is the adaptation parameter, balancing the two objectives

that shape the features during training. Upon training comple-

tion, the phase classifier is capable of predicting labels for

both source and target domain samples.
Model architecture and implementation
Our optimized model employs four convolutional layers with

hidden channels of 16, 32, 64, and 64, respectively. Each layer

utilizes a 333 convolutional kernel, a stride of 1, and a padding

of 2, followed by max pooling with the same kernel size and a

stride of 2, and an activation function. All the activation func-

tions used in this network are ReLUs except for the first convo-

lutional layer. To alleviate the dying ReLU problem, where some

neurons become permanently inactive and only output 0 for any

input during training, the first convolutional layer ReLU is
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replaced with the leaky ReLU (LeakyReLU)39 using a default

constant slope of 0.01. Post-convolution, the network applies

adaptive average pooling to the feature maps, which are then

flattened to interface with the subsequent fully connected

layers. The domain classifier and phase classifier are both

two-layer, fully connected neural networks with 64 hidden di-

mensions each. To enable phase label prediction, a softmax

layer is added to the phase classifier to convert the predicted

logits ma for each phase a (a = SC or normal) into probability

values pafema , obeying the sum rule
P

apa = 1. All models

are implemented using PyTorch 1.12.1 and trained on a single

NVIDIA RTX A5000 GPU. The optimized training procedure em-

ploys the Adam optimizer40 with a learning rate of 0.0005,

weight decay (L2 penalty, 0.001), and early stopping. Dropout

with a probability of 0.4 is applied after the last convolutional

layer and in every layer of each fully connected neural network.

Training is performed with mini-batches of 4 spectra for 150

epochs. The adaptation parameter is set to be 1.2 and is grad-

ually increased from 0 through

l =
2

1+e�g$p
� 1; (Equation 10)

in the early stages of the training, to suppress noisy signals from

the domain classifier. Here, g is set to 10 without being opti-

mized, and p represents the training progress linearly changing

from 0 to 1.

Model evaluation and hyperparameter tuning
Evaluating the performance of an unsupervised domain adapta-

tion (UDA) model is challenging due to the lack of target domain

labels.41–43 As the domain classifier acts as a regularizer on the

CNN,19 we first optimize the hyperparameter of a CNN model

without the domain classifier using simulated ARPES data

(detailed in supplemental methods, Figure S3, and Table S5).

We then fine-tune the adaptation parameter based on the transfer

score (TS) metrics,43 which evaluates the transferability and dis-

criminability of the feature space. The TS is formulated as follows:

T = H +
jMj
ln K

: (Equation 11)

Here,H denotes the Hopkins statistic,44 which measures the

clustering tendency of the feature representation in the target

domain, M denotes mutual information between the input

and prediction in the target domain, and K is the number of

classes for the normalization purpose. To obtain the Hopkins

statistic, we define ft as the feature embeddings of all target

domain samples, which is given by ft = ½f1; f2;.; fnt �, where

fj = Gf ðxtj ; qf Þ. From ft, we randomly sample m = 0:05 nt data

points45 without replacement to generate a set R. Additionally,

we generate a set U comprising m data points sampled from a

uniform distribution bounded by the minimum and maximum

values along each feature dimension of ft. We then compute

two distance measures: uk , the distance of samples in U from

their nearest neighbor in R, and wk , the distance of samples

in R from their nearest neighbor in R. The Hopkins statistic is

then defined as
H =

Pm
k = 1 ukPm

k = 1 uk+
Pm

k = 1 wk

: (Equation 12)

The mutual information is used to discern both the prediction

confidence and diversity, as described in Yang et al.,43 and is

defined as follows:

M = H
�
Ext

j
�Dt

Gy

�
Gf

�
xt
j ; qf

�
; qy

��

� Ext
j
�Dt

H
�
Gy

�
Gf

�
xt
j ; qf

�
; qy

��
; (Equation 13)

where Hð $Þ denotes the information entropy. With all the hyper-

parameters optimized, the model is then trained using all the

labeled simulated training set and unlabeled experimental

spectra. The model checkpoint with the best TS is collected

for test set predictions.
RESOURCE AVAILABILITY

Lead contact

Requests for further information and resources should be directed to and will

be fulfilled by the lead contact, Fang Liu (fang.liu@emory.edu).
Materials availability

This study did not generate new materials.
Data and code availability

d All the ARPES data that support the findings of this study are depos-

ited in the Figshare repository (https://doi.org/10.6084/m9.figshare.

25439632.v1).46

d The training script used to produce the findings of this study is publicly

available via GitHub at https://github.com/Liu-group/ARPES and via

Figshare47 at https://doi.org/10.6084/m9.figshare.25439623.v1.
ACKNOWLEDGMENTS

We thank Mingda Li for insightful discussions. X.C. and F.L. were supported

by a DOE Office of Science Early Career Research Program Award,

managed by the DOE BES CPIMS program under award number DE-

SC0025345. X.C., Y.S., and Y.W. acknowledge support from the Air Force

Office of Scientific Research Young Investigator Program under grant

FA9550-23-1-0153. Y.H. acknowledges support from NSF CAREER award

no. DMR-2239171. J.Y. was partially supported by the QuantumCT seed

grant from the Yale Provost’s Office. This research used resources of the Na-

tional Energy Research Scientific Computing Center (NERSC), a DOE Office

of Science User Facility supported by the Office of Science of the US Depart-

ment of Energy under contract no. DE-AC02-05CH11231, through NERSC

award BES-ERCAP0031226.
AUTHOR CONTRIBUTIONS

Y.W., F.L., and Y.H. conceived the project. Y.H. and J.Y. prepared the syn-

thetic and experimental datasets. X.C., Y.S., and E.H. built the ML model

and carried out data analysis with the help of V.D. All authors contributed to

the interpretation of the results and writing the manuscript.
DECLARATION OF INTERESTS

The authors declare no competing interests.
Newton 1, 100066, May 5, 2025 9

mailto:fang.liu@emory.edu
https://doi.org/10.6084/m9.figshare.25439632.v1
https://doi.org/10.6084/m9.figshare.25439632.v1
https://github.com/Liu-group/ARPES
https://doi.org/10.6084/m9.figshare.25439623.v1


Article
ll

OPEN ACCESS
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

newton.2025.100066.

Received: October 23, 2024

Revised: February 14, 2025

Accepted: March 16, 2025

Published: April 10, 2025

REFERENCES

1. Damascelli, A., Hussain, Z., and Shen, Z.X. (2003). Angle-resolved photo-

emission studies of the cuprate superconductors. Rev. Mod. Phys. 75,

473–541.

2. Boschini, F., Zonno, M., and Damascelli, A. (2024). Time-resolved ARPES

studies of quantum materials. Rev. Mod. Phys. 96, 015003.

3. Iwasawa, H., Ueno, T., Yoshida, Y., Eisaki, H., Aiura, Y., and Shimada, K.

(2023). Quantitative measure of correlation strength among intertwined

many-body interactions. Phys. Rev. Res. 5, 043266.

4. Kondo, T., Malaeb, W., Ishida, Y., Sasagawa, T., Sakamoto, H., Takeuchi,

T., Tohyama, T., and Shin, S. (2015). Point nodes persisting far beyond Tc
in Bi2212. Nat. Commun. 6, 7699.

5. He, Y., Chen, S.D., Li, Z.X., Zhao, D., Song, D., Yoshida, Y., Eisaki, H., Wu,

T., Chen, X.H., Lu, D.H., et al. (2021). Superconducting fluctuations in

overdoped Bi2Sr2CaCu2O8+d. Phys. Rev. X 11, 031068.

6. Chen, S.D., Hashimoto, M., He, Y., Song, D., He, J.F., Li, Y.F., Ishida, S.,

Eisaki, H., Zaanen, J., Devereaux, T.P., et al. (2022). Unconventional spec-

tral signature of Tc in a pure d-wave superconductor. Nature 601,

562–567.

7. Chen, C., Chen, X., Tang, W., Li, Z., Wang, S., Ding, S., Kang, Z., Jozwiak,

C., Bostwick, A., Rotenberg, E., et al. (2023). Role of electron-phonon

coupling in excitonic insulator candidate Ta2NiSe5. Phys. Rev. Res. 5,

043089.

8. Sobota, J.A., He, Y., and Shen, Z.X. (2021). Angle-resolved photoemission

studies of quantum materials. Rev. Mod. Phys. 93, 025006.

9. Keimer, B., Kivelson, S.A., Norman, M.R., Uchida, S., and Zaanen, J.

(2015). From quantum matter to high-temperature superconductivity in

copper oxides. Nature 518, 179–186.

10. Wang, Q.Y., Li, Z., Zhang, W.H., Zhang, Z.C., Zhang, J.S., Li, W., Ding, H.,

Ou, Y.B., Deng, P., Chang, K., et al. (2012). Interface-induced high-tem-

perature superconductivity in single unit-cell fese films on SrTiO3. Chin.

Phys. Lett. 29, 037402.

11. Ge, J.F., Liu, Z.L., Liu, C., Gao, C.L., Qian, D., Xue, Q.K., Liu, Y., and Jia,

J.F. (2015). Superconductivity above 100 K in single-layer FeSe films on

doped SrTiO3. Nat. Mater. 14, 285–289.

12. Faeth, B.D., Yang, S.L., Kawasaki, J.K., Nelson, J.N., Mishra, P., Parzyck,

C. ., Li, C., Schlom, D. ., and Shen, K. . (2021). Incoherent cooper pairing

and pseudogap behavior in single-layer FeSe/SrTiO3. Phys. Rev. X 11,

021054.

13. Xu, Y., Rong, H., Wang, Q., Wu, D., Hu, Y., Cai, Y., Gao, Q., Yan, H., Li, C.,

Yin, C., et al. (2021). Spectroscopic evidence of superconductivity pairing

at 83 K in single-layer FeSe/SrTiO3 films. Nat. Commun. 12, 2840.

14. Lee, J.J., Schmitt, F.T., Moore, R.G., Johnston, S., Cui, Y.T., Li, W., Yi, M.,

Liu, Z.K., Hashimoto, M., Zhang, Y., et al. (2014). Interfacial mode coupling

as the origin of the enhancement of Tc in FeSe films on SrTiO3. Nature 515,

245–248.

15. Yilmaz, T., Vescovo, E., Sadowski, J.T., and Sinkovic, B. (2022). Spectro-

scopic evidence of highly correlated electrons in VSe2. Phys. Rev. B 105,

245114.

16. Cho, D., Bastiaans, K.M., Chatzopoulos, D., Gu, G.D., and Allan, M.P.

(2019). A strongly inhomogeneous superfluid in an iron-based supercon-

ductor. Nature 571, 541–545.
10 Newton 1, 100066, May 5, 2025
17. Fagnan, K., Nashed, Y., Perdue, G., Ratner, D., Shankar, A., and Yoo, S.

(2019). Data and Models: A Framework for Advancing AIin Science

(Tech. Rep. USDOE Office of Science (SC)(United States)).

18. Ratner, D., Sumpter, B., Alexander, F., Billings, J.J., Coffee, R., Cousin-

eau, S., Denes, P., Doucet, M., Foster, I., Hexemer, A., et al. (2019). Bes

Roundtable on Producing and Managing Large Scientific Data with Artifi-

cial Intelligence andMachine Learning (DOESCOffice of Basic Energy Sci-

ences, Tech. Rep.).

19. Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette,

F., March, M., and Lempitsky, V. (2016). Domain-adversarial training of

neural networks. J. Mach. Learn. Res. 17, 1–35.

20. He, Y., Hashimoto, M., Song, D., Chen, S.D., He, J., Vishik, I.M., Moritz, B.,

Lee, D.H., Nagaosa, N., Zaanen, J., et al. (2018). Rapid change of super-

conductivity and electron-phonon coupling through critical doping in Bi-

2212. Science 362, 62–65.

21. van der Maaten, L., and Hinton, G. (2008). Visualizing data using t-SNE.

J. Mach. Learn. Res. 9, 2579–2605.

22. Zeiler, M.D., and Fergus, R. (2013). Visualizing and understanding convo-

lutional networks. In Computer Vision–ECCV 2014: 13th European Confer-

ence, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I 13

(Springer), pp. 818–833.

23. Sturmfels, P., Lundberg, S., and Lee, S.I. (2020). Visualizing the impact of

feature attribution baselines. Distill 5, e22.

24. Erion, G., Janizek, J.D., Sturmfels, P., Lundberg, S.M., and Lee, S.I. (2021).

Improving performance of deep learning models with axiomatic attribution

priors and expected gradients. Nat. Mach. Intell. 3, 620–631.

25. Agarap, A. (2018). Deep learning using rectified linear units (relu). Preprint

at: arXiv. https://doi.org/10.48550/arXiv.1803.08375

26. Boschini, F., da Silva Neto, E.H., Razzoli, E., Zonno, M., Peli, S., Day, R.P.,

Michiardi, M., Schneider, M., Zwartsenberg, B., Nigge, P., et al. (2018).

Collapse of superconductivity in cuprates via ultrafast quenching of phase

coherence. Nat. Mater. 17, 416–420.

27. Yang, X., Vaswani, C., Sundahl, C., Mootz, M., Gagel, P., Luo, L., Kang,

J.H., Orth, P.P., Perakis, I.E., Eom, C.B., and Wang, J. (2018). Terahertz-

light quantum tuning of a metastable emergent phase hidden by super-

conductivity. Nat. Mater. 17, 586–591.

28. Sun, Z., and Millis, A.J. (2020). Transient trapping into metastable states in

systems with competing orders. Phys. Rev. X 10, 021028.

29. Bozinovski, S. (2020). Reminder of the first paper on transfer learning in

neural networks. Informatica 44.

30. Pratt, L.Y. (1992). Discriminability-based transfer between neural net-

works. Adv. Neural. Inf. Process. Syst. 5.

31. Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., and

Vaughan, J.W. (2010). A theory of learning from different domains.

Mach. Learn. 79, 151–175.

32. Han, H., and Choi, S. (2021). Transfer learning from simulation to experi-

mental data: NMR chemical shift predictions. J. Phys. Chem. Lett. 12,

3662–3668.

33. Yamada, K., Lee, C.H., Kurahashi, K., Wada, J., Wakimoto, S., Ueki, S., Ki-

mura, H., Endoh, Y., Hosoya, S., Shirane, G., et al. (1998). Doping depen-

dence of the spatially modulated dynamical spin correlations and the

superconducting-transition temperature in La2-xSrxCuO4. Phys. Rev. B

57, 6165–6172.

34. Norman, M.R., Randeria, M., Ding, H., and Campuzano, J.C. (1998). Phe-

nomenology of the low-energy spectral function in high-Tc superconduc-

tors. Phys. Rev. B 57, R11093–R11096.
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