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Characterizing entanglement in quantum materials is crucial for advancing next-generation quantum
technologies. Despite recent strides in witnessing entanglement in magnetic materials with distinguishable
spin modes, quantifying entanglement in systems formed by indistinguishable electrons remains a
formidable challenge. To solve this problem, we introduce a method to extract various four-fermion
correlations by analyzing the nonlinearity in resonant inelastic x-ray scattering spectra. These correlations
constitute the primary components of the cumulant two-particle reduced density matrix. We further derive
bounds for its eigenvalues and demonstrate the linear scaling with fermionic entanglement depth, providing
a reliable witness for entanglement. Using the material-relevant strongly correlated models as examples,
we show how this entanglement witness can efficiently quantify multipartite entanglement across different
phase regions, highlighting its advantage over quantum Fisher information.
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I. INTRODUCTION

Quantum materials represent a new frontier in material
science, characterized by the macroscopic quantum phe-
nomena beyond the traditional band theory [1]. Though still
in the early stages of exploration, these materials have
demonstrated potential for transformative applications in
superconductivity, sensing, high-efficiency batteries, and
quantum computing [2–4]. Achieving a thorough under-
standing and predictive simulations of quantum materials,
comparable to the precision seen in semiconductors,
remains a significant challenge. In quantum materials,
entanglement quantifies the inseparability of a many-body
wave function into subdivisions. It is not only fundamental
to materials’ collective properties, but also critical for
their applications in quantum information science [5,6].
Therefore, detecting, quantifying, and controlling entan-
glement have become key objectives in the study of
quantum materials in the near future.
The characterization of entanglement has been effec-

tively demonstrated in quantum optics. One effective

method involves preparing identical twin quantum states
and using interferometry to detect the purity of each
partition [7]. This interferometric method has been used
to quantify the Rényi entanglement entropy [8–11], thereby
providing a robust tool for entanglement analysis. Another
approach in quantum simulations involves the high-fidelity
measurement of connected multipoint correlations, which
vanish in separable or low-entangled states [12–19]. These
quantum optics methods have been extensively applied in
the study of entanglement for quantum many-body models.
Unlike quantum simulators, solid-state materials do not

allow for single-electron control or site-resolved measure-
ments, making wave function tomography and interference
impractical. This limitation on measurement capabilities
also hinders the experimental analysis of concurrence in
macroscopic materials [20–23]. Semiglobal measures, such
as entanglement entropy, are suited for thermodynamic
scaling, which is essential for exploring topological states
through simulations [24–27]. Nonetheless, these measure-
ments remain beyond the reach of current solid-state
experimental techniques, which are confined to a narrow
range of macroscopic observables.
To address the challenge of experimentally probing

entanglement in materials, especially the entanglement
depth in multipartite systems [28–31], a practical solution
known as the entanglement witness has been proposed.
This approach employs correlation functions of local
operators, which are accessible through solid-state experi-
ments, to estimate the multipartite entanglement [32–36].
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Particularly for magnetic materials, spin fluctuations
encoded in the dynamical spin structure factor can be
translated into quantum Fisher information (QFI) [37–40],
which sets a lower bound for entanglement depth [41–43].
This approach has been experimentally validated in anti-
ferromagnetic and quantum spin liquid materials using
inelastic neutron scattering (INS) [44–49]. Moreover,
resonant inelastic x-ray scattering (RIXS), as an alternative
technique to measuring spin fluctuations, has been pro-
posed as a promising tool to probe spin entanglement even
in materials out of equilibrium [50,51].
However, the effectiveness of QFI as an entanglement

witness depends on selecting the appropriate local operator.
For general materials formed by electrons instead of
local spin moments, QFI based on spin operators is
insufficient to witness entanglement. For example, spectral
measurements in correlated nonmagnetic materials have
identified strong non-symmetry-breaking fluctuations of
charge, phonon, and Cooper pair [52–60]. While the notion
of QFI can be generalized to other mode-based local
operators [61–63], it cannot depict the complexity of more
general wave functions induced by fermionic fluctuations
[13,19,64]. Unlike distinguishable qubits or spin modes,
electrons and their orbitals become independent concepts.
Since orbitals (basis wave functions) are usually selected
artificially without uniqueness, the entanglement witness
for electrons should be invariant against any (single-
particle) basis transformations and independent of orbital
indices. Additionally, the many-body wave function of
indistinguishable fermions is antisymmetric against
exchange. Such an antisymmetric superposition contributes
to “entanglement” in the context of qubits, whose separable
counterpart is a product state, leading to the incorrect
assumption that a Fermi sea is heavily entangled in terms of
QFI. The entanglement witness for electrons should nat-
urally avoid these contributions from anticommutation
properties [65–70]. Therefore, more sophisticated basis-
independent spectral witnesses for electronic entanglement
are required.
Identifying a single spectral technique as a universal

probe for entanglement is challenging, yet previous
research indicates that the relationship between multiple
spectra may reveal quantum fluctuations. As illustrated
in Fig. 1, the angle-resolved photoemission spectrum
(ARPES) exhibits sharp quasiparticle dispersions for sepa-
rable electrons in a material. The Fermi sea serves as a
common example, but this principle can extend to mean-
field wave functions with symmetry breaking. Because of
the simplicity of the electronic wave function, particle-hole
excitations can be analytically represented in the Lindhard
form. Consequently, the scattering spectrum, with appro-
priate adjustments for matrix elements and unitary trans-
formations, can be directly derived from the corresponding
ARPES spectrum or Green’s functions, essentially forming
a “bare bubble” diagram. In contrast, in many-body states

beyond Gaussian representations, this direct link disap-
pears. Deriving the scattering cross section from ARPES
requires a vertex correction, which requires ad hoc knowl-
edge or assumptions about the interacting electron
Hamiltonian and a full summation of high-order diagrams,
often an impractical task. The inability to accurately
reproduce scattering spectra or other multiparticle response
functions (e.g., optical conductivity) from their single-
particle counterparts is commonly viewed as an indicator
of strong correlations.
In this paper, we delve into the discrepancy between

ARPES and scattering spectra and leverage it to establish
an entanglement witness approach suitable for indistin-
guishable electrons. This spectral metric should be resilient
to fermionic antisymmetry, invariant under basis trans-
formations, and exhibit monotonic scaling with entangle-
ment depth. To satisfy these criteria, we move beyond the
traditional reliance on local probe operators within a
scattering process. Instead, we focus on the nonlinear
process involved in the intermediate state of RIXS, medi-
ated by core-hole motion. This nonlinear process is often
overlooked in standard RIXS studies but can be identified
by examining the two-momentum dependency on both
incident and scattering photons. Importantly, it carries more
information about electronic correlations beyond spin and

FIG. 1. A schematic illustrating the contrast between separable
and entangled electronic systems in terms of their spectral
relationships. The upper panels show a typical separable state,
whose ARPES spectrum (middle) displays single or multiple
electronic dispersions. The shaded area indicates unoccupied
states (gray dashed line). The collective excitations measured by
x-ray scattering (right) are described by the Lindhard response
function, which can be inferred from the ARPES spectrum. The
lower panels depict an entangled state scenario, where the
ARPES spectrum appears more incoherent. The most significant
difference is that the scattering spectrum cannot be directly
derived from ARPES. Their distinction, especially in the form of
particular energy-momentum integral, indicates entanglement.
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charge. We successfully extract four-fermion observables,
forming the primary components of a two-particle reduced
density matrix (RDM). Thus, the discrepancy between
RIXS and ARPES can be quantified as a two-particle
cumulant RDM (2CRDM) [71–76]. Based on this spectral
measurability, we further discuss the relation between
entanglement depths and the 2CRDM eigenvalues λmax,
which was recently used to signal exciton condensate [76].
By satisfying all above criteria for entanglement witness,
we find it qualifying as an entanglement witness for
indistinguishable fermions and general materials. This
spectral-based entanglement witness is then applied and
validated in several representative states and models,
demonstrating advantages over QFI when systems deviate
from magnetic phases.
The organization of this paper is as follows. We discuss

the nonlinear effect in RIXS and the resulting multipoint
correlations in Sec. II. Next, we explore the connection
of these correlations to the 2CRDM, discussing the upper
bound of eigenvalues for various entanglement depths in
Sec. III. This basis-independent, RIXS-measurable fer-
mionic witness is then used to classify entanglement for
several physically interesting models and compared with
QFI in Sec. IV. Finally, Sec. V discusses specific exper-
imental strategies and potential extensions beyond the
entanglement witness.

II. CONNECTED MULTIPOINT CORRELATIONS
FROM RIXS SPECTRA

RIXS, as illustrated in Fig. 2(a), is a photon-in–photon-
out process to probe materials. This process uses an x-ray
photon (ranging from hundreds of eVs to several keVs),
precisely tuned to match a specific absorption edge. The
high-energy x-ray photon induces resonant transitions
of deep core-level electrons into the valence band. This
process excites the material into a short-lived intermediate
state with a core hole [see Fig. 2(b)], typically lasting only a
few femtoseconds. A valence electron subsequently recom-
bines with this core hole, emitting another x-ray photon
with slightly lower energy. Analyzing the energy and
momentum differences between the two photons reveals
the intrinsic collective excitations of the material [77]. Its
exceptional tunability enables the study of diverse excita-
tions, including spin and charge, d − d excitations, and
orbital orders.
While RIXS peak energies are often used to map

collective excitations in the form of two-point correlation
functions, the intensity distribution often deviates from
the precise dynamical structure factors obtained through
INS or EELS [78]. These deviations arise from the finite
core-hole lifetime, which cannot be ignored when the
collective excitations propagate rapidly. Historically seen
as a limitation in accurately representing collective
excitations, this section will demonstrate how such
deviations encode multipoint correlations, forming a

crucial framework for the entanglement witness theory
elaborated in subsequent sections.

A. A brief overview of the RIXS process

With the intermediate state, the RIXS cross section is
described by the Kramers-Heisenberg formula [79]:

Iðqi;qs;ωi;ωÞ ¼
1

Nπ

X
m;n

e−iqs·ðrm−rnÞ ImhΨintjDnεs

×
1

H − EG − ω − i0þ
D†

mεs jΨinti; ð1Þ

where N is the system size, EG is the ground-state energy,
qs is the momentum of the scattering photon, and ω is the
energy difference between the two photons. Unlike non-
resonant scattering, the state jΨinti in Eq. (1) represents a
specific intermediate state triggered by the resonant absorp-
tion. It is determined by the momentum qi and energy ωi of
the incident photon

jΨintðqi;ωiÞi ¼
X
m0

eiqi ·rm0ffiffiffiffi
N

p 1

H0 − EG − ωi − iΓ
Dm0εi jGi;

ð2Þ

where Γ denotes the inverse of the core-hole lifetime and
jGi is the ground state. For simplification, we define the

FIG. 2. (a) Schematic illustrating typical x-ray scattering
experimental setup, where the incident beam is fixed and the
spectrometer (or the sample) rotates to scan a single momentum
trajectory. This arrangement is based on the underlying
assumption that the spectral intensity depends solely on the
momentum transfer q. (b) The intermediate state with a core hole
induced by the x-ray absorption. According to the SCH
assumption, the photon emission occurs at the same site as the
absorption. (c) Two-point correlations, specifically spin (hSiSji)
and charge (hninji), probed by the spectrum.
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scalar variables in Eqs. (1) and (2) as z ¼ EG þ ωþ i0þ
and zi ¼ EG þ ωi þ iΓ. The absorption and emission
processes involve electronic dipole transitions at a specific
edge, depicted by the dipole operator

Dmε ¼
X
α;β;σ

DðεÞ
αβ ðqi=sÞc†mβσpmασ: ð3Þ

Here, c†mβσ (cmβσ) creates (annihilates) an electron in the βth

valence bands and p†
mασ (pmασ) corresponds to the αth core-

level electron at the mth unit cell. The transition matrix

element DðεÞ
αβ ðqi=sÞ is derived from atomic orbitals. Note

that both the valence bands and core levels can exhibit
degeneracy, especially for the transition-metal L and M
edges. The core-level degeneracy is crucial for probing
spin-flipped excitations [80]. In contrast, the number of
valence orbitals is irrelevant for our discussion here. To
simplify, we assume a single valence band, using the Cu
L-edge RIXS as an example, while maintaining general
applicability. Hence, we simplify its notation to cmσ,
omitting orbital indices.
The intermediate-state Hamiltonian H0 in Eq. (2)

includes additional terms beyond the valence-electron
Hamiltonian H, due to the presence of the core hole:

H0 ¼HþHcore−Uc

X
m;α

X
σ;σ0

c†mσcmσpmασ0p
†
mασ0 : ð4Þ

Here, the second term (Hcore) in Eq. (4) represents the core-
electron Hamiltonian, while the third term characterizes the
attractive interaction Uc between the core hole and valence
electrons. More specifically, the core-electron Hamiltonian
Hcore is expressed as

Hcore ¼
X
m

�X
ασ

Eedgepmασp
†
mασ þHðSOCÞ

m

�
þ T c; ð5Þ

where Eedge denotes the absorption edge energy andH
ðSOCÞ
m

details the spin-orbit coupling (SOC) among degenerated
core-level states. The last term (T c) represents the kinetic
energy of the core hole, typically ignored due to the
localized nature of core orbitals.
With spin-orbit coupling at the core level, specifically the

HðSOCÞ
m term, the intermediate state violates spin conserva-

tion. As a result, the two spin flavors in Eq. (3) for the
incident and scattering processes yield four combinations:
one spin-conserved channel and three non-spin-conserved
channels [80]. For a specific edge, the coefficients on these
channels are controlled by the matrix elements DðεiÞðqiÞ
and DðεsÞðqsÞ. For specified incident and scattering x-ray
beams, these four matrix elements in Eq. (1) are typically
consolidated into a single Mσ1σ2

σ0
1
σ0
2

[81,82]. When the polar-

izations εi and εs are parallel to the scattering plane, known
as the π − π configuration, the coefficient M simplifies

to a direct product of diagonal matrices σ0 ⊗ σ0; in
perpendicular polarization settings like the π − σ configu-
ration, M ∝ σx ⊗ σx represents one of the non-spin-
conserved channels.
In the core-electron Hamiltonian in Eq. (5), both the

potential energy and the SOC terms are spatially local.
Thus, if we disregard the kinetic energy, the core hole can
be treated as static during the intermediate state, as shown
in Fig. 2(b). This static-core-hole (SCH) assumption is
common in RIXS analysis. Under this assumption, the site
indices m in Eq. (1) and m0 in Eq. (2) must be identical.
Thus, the RIXS cross section simplifies to

Iðqi;qs;ωi;ωÞ ¼
1

N2π

X
m;n

eiq·ðrm−rnÞ Im
�
D†

nεi
1

H0 − zi�

×Dnεs

1

H − z
D†

mεs
1

H0 − zi
Dmεi

�
: ð6Þ

Here, the notation h� � �i represents an expectation taken
at the ground state jGi. Notably, Eq. (6) depends on the
momentum transfer q, rather than on the individual incident
or scattering momenta. Therefore, within the SCH
assumption, scanning both momenta in a RIXS experiment
becomes unnecessary, unless exploring dispersions with
significant 3D characteristics [83–86].
Integrating Eq. (6) leads to a two-point correlation at the

ultrashort core-hole lifetime (UCL) limit:ZZ
Iðq;ωi;ωÞdωidω ¼ π

N2Γ

X
m;n

eiq·ðrm−rnÞ
X
σ1;σ01

X
σ2;σ02

Mσ1σ2
σ0
1
σ0
2

×
D
cnσ0

1
c†nσ1cmσ2c

†
mσ0

2

E
þO

�
1

Γ2

�
:

ð7Þ

This integral can estimate the charge and spin structure
factors depending on polarization settings. Specifically,
the π − π polarizations with M ∝ σ0 ⊗ σ0 correspond to
the (hole) charge structural factor, whereas the π − σ
polarizations with M ∝ σx ⊗ σx correspond to the spin
structural factor [see Fig. 2(c)]. To obtain accurate results,
excitations that are unrelated to the target electronic
subsystem, such as the phonon excitations, must be care-
fully filtered out from the spectrum Iðq;ωi;ωÞ.

B. Impact of mobile core holes on RIXS spectra

The SCH assumption becomes questionable when con-
sidering the finite core-hole lifetime, causing deviations of
RIXS from dynamical structure factors. The intermediate
state with a finite lifetime enables the hopping of the core
hole, significantly influencing the RIXS cross section. As
illustrated by Fig. 3, the mobility of the core hole can
induce a particle-hole excitation at neighboring sites within
the valence band. To analyze this, we define the regular
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components of Eq. (4) that do not involve core-hole
motion as H0

0. Thus, the intermediate-state Hamiltonian
is rewritten as H0 ¼ H0

0 þ T c. As we show, the core-hole
motion determines the spectral dependence on the inci-
dent momentum qi, distinct from Eq. (6). While our
derivations below are general, the momentum distribution
depends on the specific core-electron band structure.
Specifically, we adopt the following kinetic Hamiltonian
for the core-level hoppings:

T c ¼ −tc
X

hm;ni;σ
ðp†

mασpnασ þ H:c:Þ: ð8Þ

Here, the core-level hopping tc is significantly smaller
than valence hoppings and interactions (inH). We assume
isotropic hoppings for degenerate core-level orbitals,
though real materials may exhibit anisotropy or off-
diagonal hoppings. In such scenarios, the hopping matrix
can be diagonalized, with bandwidths expected to be
comparable to tc.
By treating the core-hole hopping as a perturbation,

we can expand the intermediate state jΨi in Eq. (2) as

jΨintðqi;ωiÞi ≈
1ffiffiffiffi
N

p
X
m0

eiqi ·rm0

�
1

H0
0 − zi

−
T c

ðH0
0 − ziÞ2

þ T 2
c

ðH0
0 − ziÞ3

�
Dm0εi jGi

¼ jΨð0Þ
int i þ jΨð1Þ

int i þ jΨð2Þ
int i; ð9Þ

where the perturbative order of each term is determined by
the occurrence of T c. Specifically,

jΨð0Þ
int ðqi;ωiÞi ¼

X
m0

eiqi ·rm0ffiffiffiffi
N

p 1

H0
0 − zi

Dm0εi jGi;

jΨð1Þ
int ðqi;ωiÞi ¼ −

X
m0

eiqi ·rm0ffiffiffiffi
N

p 1

ðH0
0 − ziÞ2

T cDm0εi jGi;

jΨð2Þ
int ðqi;ωiÞi ¼

X
m0

eiqi ·rm0ffiffiffiffi
N

p 1

ðH0
0 − ziÞ3

T 2
cDm0εi jGi: ð10Þ

In these expansions, the H0
0 term is local for core holes,

while T c incorporates nearest-neighbor hoppings.
Consequently, the combined operators T cDm0εi in

jΨð1Þ
int ðqi;ωiÞi create a core hole at rm0 þ rδ instead of

rm0 , with rδ denoting the unit vector connecting nearest
neighbors. This process is illustrated in Fig. 3(b).
When incorporating Eq. (9) into the RIXS cross section

Eq. (1), we can dissect the spectrum according to the
perturbative order. The zeroth-order spectrum arises from

the zeroth-order intermediate state jΨð0Þ
int i in Eq. (10). Since

the core hole is static in H0
0, this zeroth-order spectrum

follows the form of Eq. (6):

Ið0Þðq;ωi;ωÞ ¼
1

N2π

X
m;n

eiq·ðrm−rnÞ Im
�
D†

nεi
1

H0
0 − zi�

×Dnεs

1

H − z
D†

mεs
1

H0
0 − zi

Dmεi

�
: ð11Þ

Spatial translational symmetry has been adopted in
Eq. (11). This zeroth-order spectrum is dominant in the
entire cross section and is often used to represent RIXS.
The first-order contribution of the RIXS cross section,

denoted as Ið1Þ, arises from the cross term between the

jΨð0Þ
int i and jΨð1Þ

int i. This contribution is given by [see Eq. (12)
in Appendix B for detailed derivations]

Ið1Þ ¼−
1

N2π

X
m;n

X
m0;n0

eiqi·ðrm0−rn0 Þ−iqs·ðrm−rnÞ Im
��

D†
n0εi

T c

×
1

ðH0
0−zi�Þ2

Dnεs

1

H−z
D†

mεs
1

H0
0−zi

Dm0εi

�

þ
�
D†

n0εi

1

H0
0−zi�

Dnεs

1

H−z
D†

mεs
1

ðH0
0−ziÞ2

T cDm0εi

��
:

ð12Þ

Unlike the zeroth-order spectrum, Ið1Þ contains a phase
factor eiqi·rδ, stemming from the inequivalence of rm0 and
rm (or rn0 and rn). This phase factor introduces a qi
dependence in addition to the q dependence.

FIG. 3. (a) Schematic illustrating the proposed scattering setup, where both the sample and spectrometer rotate independently to scan
two momenta, resolving nonlinear effects caused by the core hole’s motion. (b) The intermediate state is affected by the mobile core
hole, leading to the photon emission occurring at a different site from the absorption. (c) The three-point and four-point correlations as
leading-order terms extracted from the two-momentum distribution of RIXS.
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Next, we consider the second-order RIXS cross section, denoted as Ið2Þ. It includes the diagonal terms of the intermediate

state jΨð1Þ
int i and cross terms between jΨð0Þ

int i and jΨð2Þ
int i. Specifically,

Ið2Þ ¼ 1

N2π

X
m;n
m0 ;n0

eiqi ·ðrm0−rn0 Þ−iqs·ðrm−rnÞ Im
��

D†
n0εi

1

H0
0− zi�

Dnεs

1

H− z
D†

mεs
1

ðH0
0− ziÞ3

T 2
cDm0εi

�

þ
�
D†

n0εi
T 2

c
1

ðH0
0− zi�Þ3

Dnεs

1

H− z
D†

mεs
1

H0
0 − zi

Dm0εi

�
þ
�
D†

n0εi
T c

1

ðH0
0− zi�Þ2

Dnεs

1

H− z
D†

mεs
1

ðH0
0− ziÞ2

T cDm0εi

��
:

ð13Þ

Similar to Ið1Þ, the second-order cross section Ið2Þ intro-
duces explicit dependencies on both the incident (qi) and
scattering (qs) momenta. Figure 4 presents an example of
the full RIXS cross section, which includes contributions
from all orders, for a half-filled single-band Hubbard model
with tc ¼ 0.1t. (The Hamiltonian and parameters are
detailed in Appendix A.) While the overall spectral shape
is mainly governed by the momentum transfer q, the
distribution of spectral weight varies with different incident
momenta qi. Here, the matrix elements have been omitted
from these presented spectra, indicating that all observed qi
dependencies arise from the core-hole motion. Apart
from the weight distribution, the spectra reveal several

low-energy peaks appearing below 2t, particularly notice-
able in the spectrum with q ¼ π and qi ¼ π=2. It is
known that charge excitations are gapped in a half-filled
Hubbard model. For the model parameters used in Fig. 4
(U ¼ 8t), the Mott gap is approximately 4t. Therefore,
these low-energy excitations within the gap reflect collec-
tive fermionic modes beyond two-point charge excitations,
as a nonlinear effect stemming from the intermediate
state [87,88].
The first- and second-order cross sections can be

analyzed by subtracting the qi-independent spectra
Ið0Þðq;ωi;ωÞ with tc ¼ 0. As illustrated in Fig. 5, the
spin-conserved differential spectra highlight the spectral
weight variation across the Mott gap and provide insightful
information about the in-gap excitations attributable to
the gapped charge structure. These differential spectral

FIG. 4. RIXS spectra with the spin-conserved channel for a
12-site Hubbard model, incorporating a core-hole hopping
tc ¼ 0.1t. The upper panels show RIXS spectra at a momentum
transfer q ¼ π=6, and lower panels display spectra at q ¼ π.
From left to right, these panels present RIXS spectra for various
incident momenta qi ¼ 0, π=2, and π (with fixed momentum
transfer q). All simulations are obtained using a half-filled single-
band Hubbard model for valence electrons. Parameters are
chosen as Hubbard U ¼ 8t, core-hole interaction Uc ¼ 4t, and
inverse core-hole lifetime Γ ¼ t.

FIG. 5. The differential spectrum between RIXS spectra with
the core-hole hopping tc ¼ 0.1t and without the core-hole
hopping tc ¼ 0, for single-band Hubbard model at momentum
transfer q ¼ π. The upper panels show the spectra in the spin-
conserved channel, while the lower panels represent the spin-flip
channel. From left to right, these panels present RIXS spectra
for incident momenta qi ¼ 0, π=2, and π. All simulations are
obtained in the single-band Hubbard model (for valence elec-
trons) with the same parameters as Fig. 4.

LIU, XU, LIU, and WANG PHYS. REV. X 15, 011056 (2025)

011056-6



features, varying with different qi values, indicate the
presence of dispersive multiparticle excitations. On the
other hand, the spin-flipped differential spectra, particularly
for q ¼ π, predominantly exhibit shifts in the resonance.
The presence of gapless two-spinon excitations, which
form the zeroth order, implies that the qi dependency of
differential spectra mainly results from shifts in the relative
core-level energy compared to the spinon Fermi surface.
The spinon Fermi momentum for a half-filled Hubbard
model resides at k ¼ π=2. As a consequence, the low-
energy excitations for qi ¼ 0 and qi ¼ π relate to core-level
excitations for electrons at jkj > π=2 and jkj < π=2,
respectively. Considering the positive core-hole hopping
tc ¼ 0.1t used in our simulations, these incident momenta
lead to a redshift and blueshift of the resonance,
respectively.

C. Multipoint correlations from spectra

While the energy distributions in RIXS spectra reflect
the dispersion of collective excitations, integrating the

spectral weights yields equal-time correlation functions
of ground states or thermal ensembles. These correlations
provide information about the many-body electronic states
in macroscopic materials, where site-resolved measure-
ments, common in quantum optics, are infeasible. By
decomposing the RIXS cross section into orders relative
to the core-hole hopping tc, we now analyze the correla-
tions obtained from integrating each order of the spectrum.
Although perturbative expansions cannot be performed in
experiments, these correlations can be isolated according to
their distinct momentum and energy dependencies, as
demonstrated in this subsection.
As detailed in Eq. (7), integrating over the energies of

the zeroth-order spectrum Ið0Þ yields the spin and charge
structure factors. Given the small core-hole bandwidth,
even without the SCH approximation, Ið0Þ dominates RIXS
spectral intensity and is independent of the incident
momentum qi. For the first-order spectrum Ið1Þ, integrating
Eq. (12) over ωi and ω leads to

ZZ
Ið1Þðqi;q;ωi;ωÞdωidω

¼ πtc
2N2Γ3

X
σ1;σ01

X
σ2;σ02

Mσ1σ2
σ0
1
σ0
2

Re

�X
m;n

X
δ

eiq·ðrm−rnÞþiqi ·rδðhcn−δ;σ0
1
c†nσ1cmσ2H

0
0c

†
mσ0

2
i − hcnσ0

1
H0

0c
†
nσ1cmσ2c

†
mþδ;σ0

2
iÞ
�
þOðΓ−5Þ:

ð14Þ

Although four-fermion operators appear in the expectation value, they cannot be directly utilized as elements of a RDM
due to the inclusion of H0

0. Later discussions will clarify how we can segregate Ið1Þ from other orders through their
unique qi dependence.
Next, we examine the correlations obtained from the second-order RIXS cross section Ið2Þ. Directly integrating the Ið2Þ

over ωi and ω yields two primary sets of correlations, originating from the terms in Eq. (13):

ZZ
Ið2Þðqi;q;ωi;ωÞdωidω

¼ πt2c
2N2Γ3

X
σ1;σ01

X
σ2;σ02

Mσ1σ2
σ0
1
σ0
2

Re

�X
m;n

X
δ;δ0

eiq·ðrm−rnÞþiqi ·ðrδ0−rδÞðhcnþδ;σ0
1
c†nσ1cmσ2c

†
mþδ0;σ0

2
i− hcnσ0

1
c†nσ1cmσ2c

†
m−δþδ0;σ0

2
iÞ
�
þOðΓ−5Þ:

ð15Þ

As illustrated in Fig. 3(c), the second term represents a
three-point correlation, arising from expanding one of the
two intermediate states to the second order of tc. The first
term involves correlations among four sites, arising from
expanding both intermediate states in Eq. (1) into the first
order. These correlations are comparable in strength and
share the same momentum dependence structure, making
them inseparable from this integral.

As discussed in Sec. III, these correlations form the
RDM elements. To evaluate each of them, we can detune
the incident photon energy around the resonance and
design another integral. The spectral distribution in ωi is
distinct for the first two terms (corresponding to three-point
correlations) and the last term (corresponding to four-point
correlations) of Eq. (13), reflected by the order of poles.
Therefore, we consider the energy-weighted integral
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ZZ
ωi

2

ωi
2 þ Γ2

Ið2Þðqi;q;ωi;ωÞdωidω

¼ πt2c
8N2Γ3

X
σ1;σ01

X
σ2;σ02

Mσ1σ2
σ0
1
σ0
2

X
m;n

X
δ;δ0

eiq·ðrm−rnÞþiqi·ðrδ0−rδÞ

× hcnþδ;σ0
1
c†nσ1cmσ2c

†
mþδ0;σ0

2
i þOðΓ−5Þ: ð16Þ

This integral isolates the contributions from the four-point
correlations in Eq. (15). By substituting Eq. (16) back into
Eq. (15), we can precisely determine the three-point
correlations hcnσ0

1
c†nσ1cmσ2c

†
m−δþδ0;σ0

2
i. Notably, this integral

along the ωi axis requires knowledge of the inverse core-
hole lifetime Γ, which can be obtained either by fitting the
XAS spectral shape or by simulations.
A real experiment measures the total spectral weight

rather than a specific order. Therefore, to separate Ið0Þ, Ið1Þ,
and Ið2Þ, we should leverage their distinct momentum
dependence instead of their dependence on tc. Using again
the half-filled Hubbard model as an example, similar to
those in Figs. 4 and 5, we analyze the qi and q dependence
of the integral of simulated RIXS cross sections for spin-
conserved and spin-flipped channels (see Fig. 6). To
benchmark the correlations in the UCL limit, we extend
the Γ to 10t. As we discussed earlier, the zeroth-order term
Ið0Þðq;ωi;ωÞ exhibits no qi dependence. In scenarios with
minimal core-hole hopping, such as tc ¼ 0.1t used here, it
can be filtered out by averaging over the incident momen-
tum qi. Hence, the qi-averaged integrals in the top panels in
Fig. 6 reflect the charge and spin structure factors, as
described in Eq. (7). In our half-filled Hubbard model
example, the gapped charge excitations lead to minimal
spin-conserved integrals at finite q. Notably, the integral
at q ¼ π is relatively more pronounced due to nearest-
neighbor doublon-hole fluctuations. Conversely, the spin-
flipped integrals diverge logarithmically as q approaches
the nesting wave vector π at zero temperature, a conse-
quence of the quasi-long-range order [89], which is
bounded in a finite cluster.
The middle panels in Fig. 6 highlight the two-

momentum dependency of the integrated cross sections,
contrasting with the qi-averaged integrals. Notably, a
single-cycle oscillation along the qi axis is evident,
primarily arising from the integral of the first-order
spectrum Ið1Þðqi;q;ωi;ωÞ as detailed in Eq. (14). This
integral, consisting of several terms each marked by a
nearest-neighbor index δ, contains a phase factor eiqi ·rδ.
Although the zeroth-order spectrum Ið0Þ is the primary
contributor to the overall cross section, this distinct qi

periodicity of Ið1Þ and higher-order contributions allows us
to isolate them from the qi-independent background.
The integral of the second-order spectrum Ið2Þ in

Eq. (15), while it also exhibits a qi dependency, involves

a two-step core-hole hopping process and is dictated by a
phase factor eiqi·ðrδ0−rδÞ distinct from Ið1Þ. The phase factor
involves a difference of two nearest-neighbor indices δ and
δ0. If the lattice is bipartite, it does not overlap with that in
Ið1Þ and can be separated by momentum modulation. To
enhance visualization of Ið2Þ ’s momentum dependency, we
present symmetrized RIXS integrals, averaging over spec-
tra with tc ¼ �0.1t. This symmetrization effectively nul-
lifies contributions from Ið1Þ [see Eq. (15)]. (Note that this
symmetrization can be executed only in simulations for
illustrative purposes.) As shown in the bottom panels in
Fig. 6, these symmetrized differential integrals exhibit a qi
periodicity dominated by π, corresponding to the unique
phase factor in Ið2Þ.
Therefore, to evaluate those three- and four-point corre-

lations from a RIXS cross section, it is natural to employ
Fourier factors like eiqi ·ðrδ−rδ0 Þ to isolate Ið2Þ while filtering
out the more prominent Ið0Þ and Ið1Þ. Focusing on terms
where rδ ≠ rδ0 in integral Eq. (16), we can extract the

FIG. 6. Integrated RIXS cross sections for (a) the spin-
conserved channel and (b) the spin-flipped channel, obtained
in a single-band Hubbard model. Top panels show qi-averaged
cross sections, serving as approximations to the charge and spin
structure factors. Middle panels depict the difference between
the integrated RIXS spectra Iðq;qiÞ and the averages, predomi-
nantly reflecting the qi-dependent Ið1Þ and Ið2Þ in Eqs. (14)
and (15). Bottom panels display the tc-symmetrized integrals by
averaging results from tc ¼ 0.1t and −0.1t, eliminating the Ið1Þ
contributions. A factor of 10 is divided from intensities in the
shaded areas.
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real-space four-fermion correlation functions using a
Fourier transform over both q and qi:

2Γ3

πt2c

X
q;qi

eiq·d−iqi ·ðrδ0−rδÞ
ZZ

ωi
2

ωi
2 þ Γ2

Iðqi;q;ωi;ωÞdωidω

≈
X
σ1;σ01

X
σ2;σ02

Mσ1σ2
σ0
1
σ0
2

hcnþδ;σ0
1
c†nσ1cnþd;σ2c

†
nþdþδ0;σ0

2
i: ð17Þ

Here, n can represent any site index in a translationally
invariant system, and d ¼ rm − rn (with corresponding
index d ¼ m − n) denotes the distance between the two
pairs of creation-annihilation operators. Following the
same Fourier transform, we then extract the sum of all
second-order terms from the direct integral Eq. (15):

2Γ3

πt2c
Re

X
q;qi

eiq·d−iqi ·ðrδ0−rδÞ
ZZ

Iðqi;q;ωi;ωÞdωidω

≈
X
σ1;σ01

X
σ2;σ02

Mσ1σ2
σ0
1
σ0
2

½hcnþδ;σ0
1
c†nσ1cnþd;σ2c

†
nþdþδ0;σ0

2
i

− hcnσ0
1
c†nσ1cnþd;σ2c

†
nþd−δþδ0;σ0

2
i�: ð18Þ

Substituting Eq. (17) into Eq. (18), we obtain the three-
point correlations. Special consideration is necessary
when rδ ¼ rδ0 or rδ − rδ0 aligns with the nearest-neighbor
vectors in a nonbipartite lattice. In these cases, parts of Ið2Þ

become indistinguishable from Ið0Þ and Ið1Þ in terms of
the qi-dependent phase factor. These scenarios limit the
measurability of correlations like hcnþδ;σ0

1
c†nσ1cmσ2c

†
mþδ0;σ0

2
i

through RIXS spectrum expansion in the small tc limit.
Notably, since Ið1Þ and Ið2Þ depend explicitly on qi,

preventing free tuning of ωi for a fixed qi, unlike Eq. (7). To
experimentally implement the integrals in Eqs. (14)–(18), it
is necessary to assume that effective electronic states are
confined to two-dimensional planes or one-dimensional
chains—a scenario commonly found in correlated materials
due to the Jahn-Teller effect. In this context, qi represents
the in-plane projection of the incident momentum, and the
incident angle can be adjusted to independently control ωi
and the in-plane qi.
The correlations derived in Eqs. (17) and (18) mix

various spin configurations, whose weights are determined
by the matrix element Mσ1σ2

σ0
1
σ0
2

associated with specific

polarization geometries, as discussed in Sec. II A. To
discern correlations with particular spin configurations,
we consider the linear combination of multiple scattering
channels. Especially for systems preserving the spin SU(2)
symmetry, the three spin-flip channels can be treated
equivalently. Therefore, spin-specific correlations for these
high-symmetry systems can be isolated using only two
polarization configurations. For example, correlations with
all aligned spins can be obtained by combining spin-
conserved and spin-flipped channels:

hc·↑c†·↑c·↑c†·↑i
¼hc·↓c†·↓c·↓c†·↓i

¼1

4

X
σ1;σ2

X
σ0
1
;σ0

2

ðσ0⊗σ0þσz⊗σzÞhc·σ0
1
c†·σ1c·σ2c

†
·σ0

2
i: ð19Þ

Here, for brevity, spatial coordinates in Eqs. (17) and (18)
are omitted, simplifying the notation, such as cn↑ to c·↑.
Similarly, the off-diagonal spin-conserved correlations are

hc·↑c†·↑c·↓c†·↓i
¼hc·↓c†·↓c·↑c†·↑i

¼1

4

X
σ1;σ2

X
σ0
1
;σ0

2

ðσ0⊗σ0−σz⊗σzÞhc·σ0
1
c†·σ1c·σ2c

†
·σ0

2
i; ð20Þ

and spin-flipped correlations are

hc·↑c†·↓c·↓c†·↑i¼hc·↓c†·↑c·↑c†·↓i

¼1

2
½hc·↑c†·↓c·↓c†·↑iþhc·↓c†·↑c·↑c†·↓i

þhc·↑c†·↓c·↑c†·↓iþhc·↓c†·↑c·↓c†·↑i�

¼1

2

X
σ1;σ2

X
σ0
1
;σ0

2

ðσx⊗σxÞhc·σ0
1
c†·σ1c·σ2c

†
·σ0

2
i: ð21Þ

Note that the last two terms in the second row in Eq. (21)
vanish for systems with time-reversal symmetry and con-
served particle number. In systems with less symmetry,
it is necessary to consider three distinct channels of the
spin-flipped matrix elements.
By applying the above procedure, we can extract real-

space, spin-specific correlation functions from the inte-
grated RIXS spectra. As shown by the light-blue bars in
Fig. 7, the spin-conserved correlations are positive semi-
definite, while the spin-flipped ones exhibit negative
components and are less pronounced for the S ¼ 0 ground
state. To assess the accuracy of these RIXS-derived
correlations, we benchmark them against the exact
four-point correlations computed directly from the
ground-state wave functions. This comparison shows a
high level of consistency across all distances, with an
average deviation of 15%. This deviation arises from the
finite core-hole lifetime and broadening in RIXS. As
discussed in Sec. IV, this overshooting deviation does not
compromise the accuracy of the entanglement witness.
It is noteworthy that the exact four-point correlations
presented in Fig. 7 exhibit a reflection symmetry about
d ¼ N − 1, a consequence of the particle-hole symmetry
in the ground state of a half-filled Hubbard model with a
periodic boundary. However, this symmetry is not per-
fectly replicated in the correlations obtained from the
RIXS integrals. This discrepancy is attributed to the
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inclusion of excited states in RIXS, which introduce an
additional electron into the valence band, thereby dis-
rupting the particle-hole symmetry.

D. Connected correlations by differentiating
RIXS and ARPES

In the previous subsection, we demonstrated that RIXS
can extract high-order (three-point and four-point) corre-
lations in systems of indistinguishable fermions. While
these correlations are useful for analyzing order instabil-
ities, they do not directly indicate fermion entanglement,
which represents the intrinsic complexity of the many-body
wave function. In the context of indistinguishable fermions,
the Slater determinant wave function—also known as the
Gaussian state—serves as the baseline for “separable”
states without entanglement (see detailed definitions and
discussions in Sec. III A) [65–68]. These multipoint corre-
lations are typically nonzero in Slater determinants and can
be relatively large when a mean-field order is established.
Thus, it is necessary to subtract the lower-order discon-
nected parts from the multipoint correlations. According
to the Wick’s theorem, a general four-point correlation
hcicjc†kc†l i reduces to hcic†l ihcjc†ki − hcic†kihcjc†l i for a
Slater determinant in the canonical ensemble. Therefore,
by subtracting the disconnected parts from the correlations,
we obtain the connected (cumulant) correlations:

hcnσ0
1
cnþd;σ2c

†
nσ1c

†
nþd−δþδ0;σ0

2
iðconÞ

¼ ðδ0;dδσ1;σ2 − hcnþd;σ2c
†
nσ1iÞhcnσ01c

†
nþd−δþδ0;σ0

2
i

− hcnσ0
1
c†nσ1cnþd;σ2c

†
nþd−δþδ0;σ0

2
i

þ hcnσ0
1
c†nσ1ihcnþd;σ2c

†
nþd−δþδ0;σ0

2
i ð22Þ

and

hcnþδ;σ0
1
cnþd;σ2c

†
nσ1c

†
nþdþδ0;σ0

2
iðconÞ

¼ ðδ0;dδσ1;σ2 − hcnþd;σ2c
†
nσ1iÞhcnþδ;σ0

1
c†nþdþδ0;σ0

2
i

− hcnþδ;σ0
1
c†nσ1cnþd;σ2c

†
nþdþδ0;σ0

2
i

þ hcnþδ;σ0
1
c†nσ1ihcnþd;σ2c

†
nþdþδ0;σ0

2
i: ð23Þ

These connected correlations vanish for any Slater deter-
minants. Therefore, their strengths can be used to measure
entanglement, as discussed in Sec. III. Note that we employ
the antinormal order for the connected correlations in
Eqs. (17) and (18).
Connected multipoint correlations have been extensively

utilized in ultracold atoms to discern entanglement and
properties of many-body wave functions [12–19,90,91].
However, the nonlinear parts of x-ray scattering yield the
bare multipoint correlations, instead of connected correla-
tions. To determine their disconnected counterparts,
we turn to another solid-state spectroscopy technique—
ARPES. The zero-temperature ARPES spectrum for a
specific band is given as

Aðk;ωÞ ¼
X
m;n;σ

eik·ðrn−rmÞ

πN2
Im

�
c†nσ

1

EG −H−ω− i0þ
cmσ

�
:

ð24Þ

Here, photoemission matrix elements are omitted for
brevity. When necessary, the spin flavors can be measured
separately through spin ARPES. Using (spin) ARPES, it is
easy to show that

X
k

eik·d
Z

dωAσðk;ωÞ ¼ hc†nσcnþd;σi: ð25Þ

These integrals form the disconnected parts in Eqs. (22)
and (23). In systems preserving SU(2) symmetry, the dis-
connected parts are identical for both spin flavors and can be
directly evaluated from ARPES without spin resolution.

III. ENTANGLEMENT EXTRACTED
FROM CORRELATIONS

Many-body entanglement can be witnessed by two-point
correlations such as the two-tangle [92] and spin QFI [38],
which are accessible via solid-state spectroscopy tech-
niques [40]. These methods, extendable to local operators
in fermionic modes [61], utilize fluctuations to estimate a
lower bound for the entanglement depth of a many-body
wave function [37]. However, these boundaries are deter-
mined by mapping correlations to isolated qubits with
separable modes and rely on a priori knowledge of the
dominant bosonic excitations in the material. In general

FIG. 7. Real-space spin-specific correlations for (a) spin-
conserved and (b) spin-flipped configurations as a function of
spatial distance d. The dark blue bars represent correlations
directly obtained from the ground-state wave function via ED
simulations, while the light-blue bars represent correlations
evaluated using the integrated RIXS cross section specified in
Eqs. (17) and (18) and the superposition of polarization geom-
etries outlined in Eqs. (19)–(21).
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many-electron systems, especially those without local
magnetic moments or charge densities, the orbital modes
that can be occupied or unoccupied are chosen as bases
without any preference. Entanglement among electrons
cannot be properly measured based on these arbitrarily
defined modes. Moreover, the entanglement of indistin-
guishable fermions should be evaluated in a manner such
that the inherent anticommutation relations of fermions
do not contribute to entanglement [65–68]. These con-
ditions necessitate an entanglement witness that is invariant
under unitary basis transformations and vanishes for
Slater determinants. Previous studies have suggested that
the Slater rank [93–95] and concurrence [21,94,96] are
basis-invariant measures for entanglement in two-particle
systems. However, they cannot be directly measured by
solid-state spectroscopy, similar to entanglement entropy.
Additionally, their computational complexity scales expo-
nentially with system size.
The identification of connected three-point and four-

point correlation functions using the nonlinear effects in
RIXS provides a potential avenue for witnessing entangle-
ment in indistinguishable electrons. As we show in this
section, these multipoint correlations provide major ele-
ments in the 2CRDM, whose maximal eigenvalues can be
used as a basis-independent entanglement witness to
quantify the boundaries of entanglement depth.

A. Entanglement in indistinguishable fermions

For spin systems, a pure many-body state jΨi is defined
as separable if it can be expressed as a direct product of
single-spin states:

jΦðspinÞi ¼ jϕ1i ⊗ jϕ2i ⊗ � � � ⊗ jϕNi; ð26Þ

where jϕii denotes the single-particle state for the ith mode.
In fermionic many-body systems composed of indistin-
guishable particles, a many-body state must obey anti-
symmetry under permutations of modes (orbitals). Thus,
a separable fermionic state can be expressed as a Slater
determinant, or a Gaussian state [93,94]:

jΨi ¼ e−i
P

ij
c†i ξijcj

YNe

j¼1

c†j j0i ¼
YNe

j¼1

X
k

Ujkc
†
kj0i; ð27Þ

where ξ is a Hermitian matrix and U ¼ eiξ is the unitary
transformation acting on the fermionic basis. For conven-
ience, the spin indices are absorbed into the orbital indices
within this section. Here, we exclusively consider states
with a conserved particle number Ne, although Gaussian
states are generally definable without distinguishing
between particles and holes [97].
When a state cannot be expressed as a separable state

through any single-particle basis transformations, it is an
entangled state. To further classify different entanglement

depths, the notion of k-producibility has been widely used
in spin states and more broadly in quantum states with
distinguishable modes [38–40]. Specifically, a k-producible
spin state is expressed in the same direct-product form as
Eq. (26), but each block wave function jϕii includes no
more than k spin modes.
To generalize this notion to indistinguishable fermions,

we adopt the framework introduced in Ref. [61] and
consider the partitioning of second-quantized fermionic
operators. Additionally, we allow arbitrary (single-particle)
basis transformations on top of this framework to address
the ambiguity of the orbital basis. In this context, any
fermionic many-body state can be written as

jΨi ¼ e−i
P

ij
c†i ξijcjC⋆

1C
⋆
2…C⋆

Mj0i: ð28Þ

For a fixed orbital basis determined by the Gaussian
operator, the wave function decomposes into several
block-creation operators. Each C⋆

p contains irreducible
Np-electron creation operators in a single-particle subspace
Mp, formed by a partition of fermionic orbitals:

C⋆
p ¼

X
ηp

ϕ⋆
pðηpÞ

Y
m∈Mp

ðc†mÞηpðmÞ; ð29Þ

where ηpðmÞ denotes the occupation number (0 or 1)
of the orbital m, with irreducible coefficients ϕ⋆

pðηpÞ.
Irreducibility here means that Cp cannot be factorized into
a product of two blocks of creation operators with nonzero
fermions. All these partition subspaces constitute the entire
single-particle Hilbert space, i.e.,M1⨁M2⨁ � � �⨁MM.
The entanglement depth of a fermionic state is then
defined as

min
ξ
fmaxðN1; N2;…; NMÞg; ð30Þ

where Np is the number of particles in the pth partition
Mp. This minimax definition of Eq. (30) prevents the
misclassification of a state due to an inappropriate basis
selection, such as the Fermi sea in a real-space basis.
Notably, different from Ref. [61], we define the depth of
each block using its particle number (or hole number,
whichever is smaller) instead of the orbital number, as a
finite number of fermions can occupy an infinite number of
bases. Figure 8 shows an example of determining entan-
glement depth using the minimax definition. A state is
called k-producible if k is no less than the entanglement
depth defined in Eq. (30). Obviously, a Gaussian state in
Eq. (27) is a 1-producible state in this context.

B. Basis-invariant measure based
on reduced density matrix

Directly identifying entanglement and quantifying the
entanglement depth using Eq. (30) requires traversing all
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single-particle basis transformations via U ¼ eiξ, making it
a challenging task for most many-body states. A more
practical approach involves considering observables that
are invariant under basis transformations. An observable
that effectively quantifies the difference between a state and
the complete set of separable states can serve as a measure
of entanglement [98].
The RDM is a crucial tool for characterizing orbital

entanglement entropy and quantum mutual information
[73,99–102]. In particular, the two-particle RDM Oijkl ¼
hcicjðckclÞ†i acts as a tensor metric for correlations in
quantum many-body systems [103–107], exhibiting the
symmetry Oijkl ¼ −Ojikl ¼ −Oijlk ¼ O�

klij. Under a
Gaussian transformation, which is equivalent to a unitary
basis transformation c̃j ¼

P
k Ujkck, the two-particle RDM

of a many-body state transforms as

Oijkl ¼
X
m;n

X
p;q

UimUjnOmnpqU�
pkU

�
ql: ð31Þ

The RDM has been utilized to characterize pairing in
two-particle systems, with its maximal eigenvalue bounded
by 2 for unpaired states [108].
To efficiently detect entanglement, an observable should

yield zero for any separable state as defined in Eq. (27) and
nonzero for any entangled state. Utilizing the connected
part of four-point correlations derived in Sec. II D, one can
further construct the 2CRDM [71–75]

OðconÞ
ijkl ¼hcicjðckclÞ†i−hcic†kihcjc†l iþhcic†l ihcjc†ki: ð32Þ

The 2CRDM transforms in the same way as the RDM
under Eq. (31). The 2CRDM isolates the portion of the
two-particle (four-point) RDM that cannot be reduced to

products of separable one-particle (two-point) contribu-
tions. According to Wick’s theorem, for a Gaussian state

that conserves particle number, OðconÞ
ijkl ≡ 0, making it an

efficient indicator of entangled fermionic states [74]. This
is consistent with experimental intuitions that the differ-
ence between scattering spectra and the bare-bubble
response function derived from single-particle spectra
signals correlations.
The 2CRDM not only indicates the presence of entan-

glement, but also connects to the irreducible partitions in

Eq. (29). Notably, the 2CRDM OðconÞ
ijkl is nonzero only if all

indices (i, j, k, and l) belong to the same partition, owing to
the subtraction of disconnected correlations. For example,
if i; l∈Mp and j; k∈Mq ≠ Mp, then we have

hcicjðckclÞ†i ¼ −hcic†l ihcjc†ki, with hcic†ki ¼ hcjc†ki ¼ 0

and, thus, OðconÞ
ijkl ¼ 0. This property holds true for all the

other cases except when all indices belong to the same
irreducible partition. For any partitions of fermionic orbi-
tals, the tensor 2CRDM is composed of individual tensors
within each partition:

OðconÞ
ijkl ¼

X
p

oðpÞijkl1i;j;k;l∈Mp
: ð33Þ

Therefore, within the definition of entanglement depth in
Eqs. (28)–(30), the 2CRDM factorizes into nonoverlapping
blocks and provides insight into the sizes of partitions
under a specific basis selection. Although the values within

each block oðpÞijkl depend on the expression of each C⋆
p in

Eq. (29), this factorization efficiently reduces the analysis
into individual partitions, whose properties are determined
by their individual particle numbers [73,75,76].
To quantify entanglement depth considering all possible

single-particle basis transformations, the metric observable
derived from the 2CRDM must be invariant under unitary
transformations. Unitary invariants of a general tensor can
be represented as functions of high-order singular values
[109,110]. In practice, we examine the eigenvalues of the

matrices OðconÞ
ðijÞðklÞ and OðconÞ

ðikÞðjlÞ by pairing the RDM indices,

as a practice employed in previous studies [73,75,76].
While the eigenvalues of these flattened matrices do not
precisely match the singular values of the tensor, they
remain unitary-invariant metrics under the transformation
in Eq. (31) and are, thus, functions of the tensor’s singular
values. These eigenvalues, especially the maximal eigen-
value denoted as λmax, serve as a basis-independent metric
to quantify the strength of the 2CRDM or, equivalently, the
distance from the nearest separable state (Gaussian states)
[75,76]. Because of the better properties regarding the

upper bounds, we choose the matrix OðconÞ
ðikÞðjlÞ and its

maximal eigenvalue λmax as the entanglement witness.
Discussions on the other form of the flattened matrix

FIG. 8. Schematic illustrating the genuinely entangled parti-
tioning for fermionic states, highlighting the ambiguity in basis
selection. For each chosen basis, the producibility is determined
by identifying the maximum particle numbers among all irre-
ducible blocks. The entanglement depth of the many-body state is
subsequently defined as the minimum value among all basis
selections, according to Eq. (30).
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can be found in Appendix C. As a benchmark, we also
compare λmax with the high-order singular values obtained
from the canonical polyadic and Tucker decompositions of
the tensor form of 2CRDM in Appendix D, achieving
qualitative consistency.
Figure 9 presents an example of the flattened matrix

OðconÞ
ðikÞðjlÞ, obtained from a 1D extended Hubbard model,

which is discussed in detail in Sec. IV B. Because of the
anticommutation relations, the diagonal elements (i ¼ j
and k ¼ l) vanish. Moreover, only a small fraction of
matrix elements hold significant values, resulting in an
effectively sparse matrix, because correlations decay rap-
idly with distance in this system.
While the full matrix can be computed using exact

ground-state wave functions obtained from numerical
simulations, its elements have different levels of acces-
sibility in spectral measurements. Elements in certain rows
and columns, like i ¼ k and j ¼ l, correspond to two-point
correlations, which can be derived from spin and charge
structure factors. However, these elements alone are insuf-
ficient to cover all significant matrix elements. The leading-
order expansion of RIXS spectral integrals evaluates the
four-fermion correlations hcncnþdc

†
nc

†
nþd−δþδ0 iðconÞ and

hcnþδcnþdc
†
nc

†
nþdþδ0 iðconÞ, in addition to these two-point

correlations, as discussed in Sec. II C. As shown in Fig. 9,
these matrix elements accessible from RIXS can cover most

of the significant matrix elements in OðconÞ
ijkl . We further find

that they provide a good approximation of the maximal
eigenvalue λmax of the flattened matrix. Specific models are
employed to quantify errors resulting from this truncation
and to validate the effectiveness of RIXS-accessible matrix
elements in witnessing entanglement in Sec. IV.

C. Boundaries and entanglement witness

Since OðconÞ
ijkl becomes block diagonal according to the

partitions of fermionic orbitals under a specific basis
selection, the maximal eigenvalue λmax is determined by

λmaxðOðconÞ
ijkl Þ ¼ max

p
λmaxðoðpÞijklÞ; ð34Þ

where oðpÞijkl denotes the tensor blocks in Eq. (33). Thus, if
we can identify the maximal eigenvalue for all possible
wave functions generated by a single irreducible C⋆

p within
a partition Mp containing Np particles, it satisfies

λmaxðOðconÞ
ijkl Þ ≤ max

p
μðNpÞ; if k ≤ Np ∀ p:

μðnÞ ¼ sup feigenvalues of 2CRDM∶ ∀ jΨn−prodig:
ð35Þ

Given that λmax remains invariant under (single-particle)
basis transformations, it provides a lower bound for the
entanglement depth of the many-body wave function.
Hence, if the measured λmax in a system exceeds μðkÞ,
the wave function is at least (kþ 1)-producible.
For the entanglement witnessing approach to be prac-

tical, the single-partition upper bound μðkÞ must increase
monotonically with k. Obviously, the property of 2CRDM
ensures that μð1Þ ¼ 0, suggesting that any nonzero λmax
signifies at least a 2-producible state. In the following
subsections, we derive the upper bounds for more
entangled states and prove that

μðkÞ ¼ 1

2

�
k −

1

2

�
; for k > 1: ð36Þ

Note that the bound shown in Eq. (36) and its general form
have been previously examined in Ref. [76]. The deriva-
tions that follow tighten these bounds for arbitrarily filled
partitions in the context of entanglement depth, which
are further validated numerically in Sec. IVA. Notably,

in the OðconÞ
ðikÞðjlÞ form of matrix flattening, the maximal

matrix eigenvalue λmax always exceeds the absolute value
of the minimal matrix eigenvalue λmin, serving as a good

FIG. 9. Upper triangle: values and distribution of elements in
the flattened matrix of the 2CRDM, with point sizes correspond-
ing to the scale of the values. Lower triangle: matrix elements that
can be measured by spin or charge structure factors (red) and by
RIXS (red and blue). The matrix and its measurability are
symmetric when transposing the rows (i and k indices) and
columns (j and l indices). This example is drawn from the central
four sites of a half-filled 1D Hubbard model in a 128-site chain.
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approximation to the tensor’s high-order singular values
(see Appendix D).

1. Upper bound for 2-producible states

In a system with two indistinguishable fermions, the
general wave function can be expressed as

jΨ2−prodi ¼
X
i;j

ωijc
†
i c

†
j j0i; ð37Þ

where ω is an antisymmetric matrix. It has been proven that
a unitary basis transformation exists such that UωUT ¼
diagðZ1;…; Zr; 0;…; 0Þ [93]. Each Zi is a 2 × 2 matrix
defined by

Zi ¼
�

0 zi=2

−zi=2 0

�
; ð38Þ

with zi > 0 and
P

i z
2
i ¼ 1. The number of nonvanishing

zi’s, denoted as r, is known as the Slater rank, which
measures the complexity of a two-particle pairing state
[93]. Since we represent the wave function using particle or
hole language in Eq. (30), whichever has a smaller count, r
is always greater or equal to 2. Using the Slater decom-
position, a 2-producible wave function can be expressed as

jΨ2−prodi ¼
e−i

P
ij
c†i ξijcjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

r
j¼1 jzjj2

q Xr
j¼1

zjc
†
jc

†
jþ1j0i; ð39Þ

with U† ¼ eiξ the unitary transformation that block diag-
onalize ω.
To find the maximal eigenvalue of the 2CRDM for an

arbitrary jΨ2−prodi, we substitute Eq. (39) into the 2CRDM
Eq. (32). The block diagonal terms where all indices belong
to the same Zi block leads to factorized eigenvalues �z4i ,
depending only on each individual zi coefficient. The
remaining eigenvalues, which may contain information
about entanglement, satisfy the rth degree polynomial
equation:

λr þ a1λr−1 þ a2λr−2 þ � � � þ ar−1λþ ar ¼ 0; ð40Þ
where the coefficients am are given by

am ¼ ð−1Þm
X

S¼fj1 ;…;jmg
S⊆f1;…;rg

z2j1z
2
j2
…z2jm

×

"
1 −

Xm
p¼1

ð2p − 1Þ
X

fi1;…;ipg⊆S
z2i1…z2ip

#
: ð41Þ

For example, with Slater rank r ¼ 2, we have

λ2 − ½z21ð1 − z21Þ þ z22ð1 − z22Þ�λ
þ z21z

2
2ð1 − z21 − z22 − 3z21z

2
2Þ ¼ 0: ð42Þ

Given constraint z21 þ z22 ¼ 1, the solutions are λ ¼ 3z21z
2
2

or −z21z22.
For a general rank r state, it is important to note that the

exchange of any pairs of zi and zj corresponds to a basis
transformation. As a result, the set of eigenvalues fλg of

OðconÞ
ijkl must be invariant under these exchanges. Therefore,

the maximum (and minimum) eigenvalue λmax (λmin) must
be a symmetric function of nonzero fzjg. Because of
this reason, the factorized eigenvalues independent from
Eq. (40) cannot be the extrema λmax or λmin. By imposing
z2j ¼ 1=r, Eq. (41) becomes

am ¼
�

r

m

� ð−1Þm
rm

�
1 −

Xn
p¼1

�
m

p

�
2p − 1

rp

�

¼
�

r

m

� ð−1Þm
rm

�
1þ

Xm
p¼1

�
m

p

�
1

rp

−
2

r

Xm
p¼1

�
m − 1

p − 1

�
m
rp−1

�

¼
�

r

m

� ð−1Þm
rm

��
1þ 1

r

�
m
−
2m
r

�
1þ 1

r

�
m−1

�

¼ ð−1Þm
�

r

m

� ðrþ 1Þm
r2m

�
1 −

2m
rþ 1

�
: ð43Þ

Substituting Eq. (43) into Eq. (40), we then obtain

�
λmax=min þ

1

r
−

1

r2

��
λmax=min −

1

r
−

1

r2

�
r−1

¼ 0: ð44Þ

The solutions are λmax=min ¼ 1=r2 � 1=r for r ≥ 2 and
λmax=min ¼ 0 for r ¼ 1 (the case of a Slater determinant).
While r can be uniquely defined in a model system fixed
orbital basis, we note that it is ambiguous in actual
experimental systems, since the basis set can be expanded
to an infinitely large one. Therefore, the upper bounds
useful for entanglement witness should be independent of r
by taking the maximal values. That being said,

μð2Þ ¼ sup
r≥2

fλg ¼ 3

4
; ð45Þ

which corresponds to the k ¼ 2 case for Eq. (36). This
upper bound is reached for half-filled systems with r ¼ 2,
consistent with the intuition that half-filled electronic states
should form more entangled states. Here, we employ the
notation of supremum because the upper bound can be
reached in the half-filled Greenberger-Horne-Zeilinger
(GHZ) state [76].
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2. Upper bound for 3-producible states

The general form of a 3-producible fermionic state can
be expressed as

jΨ3−prodi ∝
X
i;j;k

ωijkc
†
i c

†
jc

†
kj0i; ð46Þ

where ωijk is an antisymmetric tensor with dimension N,
the number of orbitals. This state cannot be transformed
into a sum of Slater determinants in the same manner as
Eq. (39), since the N3 degrees of freedom in the ωijk tensor
exceed the N2 parameters available in a unitary basis
transformation for solving the corresponding set of linear
equations [94]. Therefore, instead of proving the maximal
eigenvalues among all states, we use the generalized GHZ
state and W state [defined later in Eqs. (47) and (52)] to
derive the upper bound μð3Þ. These two classes of states are
known as the maximally multipartite entangled states in
tripartite systems [111,112].
In a GHZ-like three-particle state, the particles occupy

nonoverlapping sets of orbitals in the similar way as the
Slater decomposition in Eq. (39), described by [113]

jGHZ3i ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
r
j¼1 jzjj2

q Xr

j¼1

zjc
†
jc

†
jþ1c

†
jþ2j0i: ð47Þ

We again ignore the factorized eigenvalues depending on
individual zi’s. Substituting Eq. (39) into the 2CRDM
Eq. (32) leads to the rth-order eigenvalue equation:

λr þ a1λr−1 þ a2λr−2 þ � � � þ ar−1λþ ar ¼ 0; ð48Þ

with coefficients

am ¼ ð−1Þm
X

S¼fj1 ;…;jmg
S⊆f1;…;rg

z2j1z
2
j2
…z2jm

×
Xm
p¼0

2m−pð1 − 3pÞ
X

fi1;…;ipg⊆S
z2i1…z2ip : ð49Þ

Here, we use the symmetry among all coefficients to find
the extrema of λ. With z2j ¼ 1=r, Eq. (49) becomes

am ¼
�

r

m

� ð−1Þm
rm

�Xn
p¼0

�
m

p

�
1 − 3p
rp

ðk − 1Þm−p
�

¼
�

r

m

� ð−1Þm
rm

��
2þ 1

r

�
m
−
3m
r

�
2þ 1

r

�
m−1

�

¼ ð−1Þm
�

r

m

� ð2rþ 1Þm
r2m

�
1 −

3m
rþ 1

�
: ð50Þ

Substituting Eq. (50) into Eq. (48), we then obtain�
λmax=min þ

1

r
−

1

r2

��
λmax=min −

2

r
−

1

r2

�
r−1

¼ 0: ð51Þ

The solutions are λmax ¼ 2=rþ 1=r2 ≤ 5=4 and λmin ¼
−1=rþ 1=r2 ≥ −1=4 for r ≥ 2.
We further consider the W state as another example of a

maximally entangled three-particle state, whose expression
in indistinguishable fermionic systems is [111,112,114]

jWi ¼ 1ffiffiffi
3

p ðc†1c†5c†6 þ c†4c
†
5c

†
3 þ c†4c

†
2c

†
6Þj0i: ð52Þ

It is straightforward to show that the maximal eigenvalue
λmax for this state is 8=9, which is less than 5=4. To
explore a more general state beyond the equal-coefficient
W state, we further examine the generalized spin state,
defined as [111]

jSPIN3i¼ðz1c†1c†2c†3þz2c
†
1c

†
5c

†
6þz3c

†
4c

†
5c

†
3þz4c

†
4c

†
2c

†
6Þj0i:
ð53Þ

When the first three and last three indices are conceptually
regarded as up and down spins, Eq. (53) represents all
possible configurations of a singly occupied spin state.
The W state is a specific case within the class of jSPIN3i
states, corresponding to the parameters z1 ¼ 0 and
z2 ¼ z3 ¼ z4 ¼ 1=

ffiffiffi
3

p
. The jGHZ3i state with r ¼ 2 is

also a special case of jSPIN3i by setting z1 ¼ z2 ¼ z3 ¼
z4 ¼ 1=2 and applying Hadamard basis transformations for
each pairs of orbitals:

1

2
ðc†1c†2c†3 þ c†1c

†
5c

†
6 þ c†4c

†
5c

†
3 þ c†4c

†
2c

†
6Þj0i

¼ 1ffiffiffi
2

p
�
c†1 þ c†4ffiffiffi

2
p c†2 þ c†5ffiffiffi

2
p c†3 þ c†6ffiffiffi

2
p j0i

þ c†1 − c†4ffiffiffi
2

p c†2 − c†5ffiffiffi
2

p c†3 − c†6ffiffiffi
2

p j0i
�
: ð54Þ

A nice property of the generalized spin state is that the class
of Eq. (53) is closed under basis exchanges.
Substituting Eq. (53) into the flattened matrix of the

2CRDM, the eigenproblem factorizes into three groups of
eigenequations: 12 second-order equations, two third-order
equations, and one sixth-order equation. First, the second-
order equations are formulated as

λ2�2ðz2az2b−z2cz2dÞλþz4az4b−z2cz2dþz4cz4d−2z2az2bz
2
cz2d¼0;

ð55Þ

where fa; b; c; dg are different combinations of zj ’s indices
f1; 2; 3; 4g in Eq. (53). As previously discussed, the
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extremum values of eigenvalues occur at z2j ¼ 1=4, sim-
plifying the equation to

�
λmax=min þ

1

4

��
λmax=min −

1

4

�
¼ 0: ð56Þ

Thus, λmax ¼ 1=4 and λmin ¼ −1=4 for this sector of
eigenspace.
Second, the third-order equations are

λ3 �
X
j1≠j2

z2j1z
2
j2
λ2 þ 1

2

"X
j1≠j2

ðz4j1z4j2 − z2j1z
2
j2
Þ

þ
X

j1≠j2≠j3

z2j1z
2
j2
z2j3 − 24Z2 ∓ 12Z

#
λ

� 1

6

X
j1≠j2≠j3

z2j1z
2
j2
z2j3ðz2j1z2j2 þ z2j1z

2
j3
þ z2j2z

2
j3
þ z2j1z

2
j2
z2j3Þ

∓ 2Z2 þ 2Z þ ð2Z ∓ Z2Þ
X
j1≠j2

z2j1z
2
j2
¼ 0: ð57Þ

Here, Z ¼ z1z2z3z4 and the summations contain all per-
mutations. By setting identical variables to find the
extrema, the two equations correspond to

�
λmax=min þ

1

4

�
2
�
λmax=min −

5

4

�
¼ 0

or

�
λmax=min þ

1

4

�
3

¼ 0; ð58Þ

giving λmax ¼ 5=4 and λmin ¼ −1=4, the same as the results
obtained from the jGHZ3i state in Eq. (51).
Lastly, the remaining eigenvalues are derived from the

nondegenerate, sixth-order eigenequation. Because of its
complicated form as a function of z1, z2, z3, and z4, and its
symmetry with respect to permutations, we directly present
the simplified equation with all z2j ’s set identically:

�
λmax=min þ

1

4

�
3
�
λmax=min −

1

4

�
3

¼ 0: ð59Þ

Thus, the λmax=min ¼ �1=4 for the sixth-dimensional sector
of the eigenspace.
In conclusion, for both jGHZ3i and jSPIN3i states, we

find consistent result about the upper bound

μð3Þ ¼ sup
r≥2

fλg ¼ 5

4
; ð60Þ

which corresponds to the k ¼ 3 case for Eq. (36). This
upper bound is also reached by half-filled electronic states
the 3-producible class.

3. Upper bounds for k-producible states

For a general k-particle state, expressed as [113]

jΨk−prodi ∝
X
i1;…;ik

ωi1;…;inc
†
i1
c†i2…c†ik j0i; ð61Þ

we still examine its maximally entangled form as a
generalized GHZ state:

jGHZki ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
r
j¼1 jzjj2

q Xr

j¼1

zj
Yk−1
s¼0

c†jþsj0i: ð62Þ

The derivation of the extremum eigenvalues follows
the same strategy as the jGHZ3i states. The only difference
is that the coefficients in the rth-order eigenvalue
equation are

am ¼ ð−1Þm
X

S¼fj1 ;…;jmg
S⊆f1;…;rg

z2j1z
2
j2
…z2jm

×
Xm
p¼0

ð1 − kpÞðk − 1Þm−p
X

fi1;…;ipg⊆S
z2i1…z2ip : ð63Þ

By imposing the exchange symmetry among zj and
focusing on the extrema eigenvalues, we obtain

am ¼
�

r

m

� ð−1Þm
rm

"Xn
p¼0

�
m

p

�
1 − kp
rp

ðk − 1Þm−p

#

¼ ð−1Þm
�

r

m

� ðkr − rþ 1Þm
r2m

�
1 −

km
rþ 1

�
; ð64Þ

which simplifies the eigenvalue equation into

�
λmax=min þ

1

r
−

1

r2

��
λmax=min −

k − 1

r
−

1

r2

�
r−1

¼ 0:

ð65Þ

The solutions are λmax ¼ ðk − 1Þ=rþ 1=r2 and λmin ¼
−1=rþ 1=r2 for r ≥ 2. Recall that r ¼ 1 always leads to
a separable state with λmax=min ¼ 0. Therefore,

μðkÞ ¼ sup
r≥2

fλg ¼ 1

2

�
k −

1

2

�
: ð66Þ

This bound is consistent with the result found in Ref. [76]
on the utility of 2CRDM in characterizing exciton con-
densation. Until now, we have proven the upper bounds of
eigenvalues in a k-producible state. Notably, the proof for
k > 2 is based on assuming the maximally entangled state
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is the GHZ form, without traversing all possible states in
the two-particle case.

D. Generalization to mixed states

While all the simulations presented in this paper are
conducted at zero temperature, the entanglement witness
theory can be extended to mixed states of an ensemble.
A mixed state ρk is defined as k-separable if it can be
expressed as a convex combination of k-producible states:

ρk ¼
X
τ

pτjΨðτÞ
k−prodihΨðτÞ

k−prodj: ð67Þ

Here, pτ>0 with
P

τ pτ ¼ 1, and jΨðτÞ
k−prodi is k-producible

as defined in Sec. III A. A state is (kþ 1)-particle entangled
if it is not k-separable. The 2CRDM of a mixed-state
ρ ¼ P

τ pτjΨðτÞihΨðτÞj can be expressed using its individ-
ual pure states:

OðconÞ
ijkl ðρÞ ¼

X
τ

pτ½hΨðτÞjcicjðckclÞ†jΨðτÞi

− hΨðτÞjcic†kjΨðτÞihΨðτÞjcjc†l jΨðτÞi
þ hΨðτÞjcic†l jΨðτÞihΨðτÞjcjc†kjΨðτÞi�: ð68Þ

Because of the additivity of OðconÞ
ijkl and its flattened matrix

OðconÞ
ðijÞðklÞ, the maximal eigenvalue λmax for the mixed state ρ

is bounded by the sum of the maximal eigenvalues obtained
by each pure state:

λmaxðOðconÞ
ijkl ðρÞÞ ≤

X
τ

pτλmaxðOðconÞ
ijkl ðjΨðτÞihΨðτÞÞjÞ

≤ max
τ
λmaxðOðconÞ

ijkl ðjΨðτÞihΨðτÞjÞÞ: ð69Þ

Thus, if λmax for a mixed state exceeds μðkÞ, it cannot be
expressed as a convex combination of all k-producible pure
states and must therefore be (kþ 1)-particle entangled.
Hence, the entanglement witness using λmax applies to
mixed states.

IV. WITNESSING ENTANGLEMENT IN
REPRESENTATIVE SYSTEMS

In this section, we demonstrate the effectiveness of the
RIXS-derived 2CRDM eigenvalue λmax as an entanglement
witness by applying it to various representative quantum
states and material-relevant Hamiltonians. Specifically,
we focus on trial wave functions, 1D extended Hubbard
models, and quasi-1D Hubbard models with frustrated
geometry. We discuss the advantages of the RDM-based
fermionic entanglement witness and assess the effective-
ness of RIXS measurements in these contexts. Given the
nature of the models and computational complexity, all

discussions in this section are restricted to zero-temperature
pure states. However, as discussed earlier, the generaliza-
tion to mixed states is straightforward.

A. Randomly sampled many-body states

To verify the effectiveness of λmax in witnessing the
entanglement depth of a fermionic many-body state, we
examine several classes of quantum states with known
entanglement depths. One such example is the pairing state
with Slater rank r ¼ 2, expressed by [93]

jN2ðz1; z2Þi ¼ ðz1c†1c†2 þ z2c
†
3c

†
4Þj0i: ð70Þ

Unless the two coefficients are chosen to be special values
(i.e., z1z2 ¼ 0), this state cannot be expressed as a single
Slater determinant in any basis, indicating an at least
bipartite entangled state. As shown in the leftmost set in
Fig. 10, the witness λmax for randomly sampled jN2i states
ranges from 0 to 0.75, the upper bound μð2Þ for a
2-producible state. Thus, the λmax effectively captures the
range of entanglement depth for jN2i. In other words, any
states with λmax > 0.75 cannot be represented as a jN2i
state. Note that the maximal λmax corresponds to the
2CRDM eigenvalue, distinct from that in the bare RDM.
Here, a separable state leads to λmax ¼ 0 due to Wick’s
theorem, while it is bounded by 2 in the latter case [108].

FIG. 10. The distribution of the fermionic entanglement wit-
ness λmax for random trial states across various classes of wave
functions, evaluated using the maximal singular value for the
2CRDM. The theoretical boundaries for k-producible states are
indicated by the darkness of the background, with the λmax ¼ 0
states indicating no witnessed entanglement. The white dots and
gray error bars denote the means and variances within each class
of random states.
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Similarly, we further consider the following k-producible
fermionic GHZ states with unrestricted coefficients z1 and
z2 [113]:

jGHZ3ðz1; z2Þi ¼ ðz1c†1c†2c†3 þ z2c
†
4c

†
5c

†
6Þj0i;

jGHZ4ðz1; z2Þi ¼ ðz1c†1c†2c†3c†4 þ z2c
†
5c

†
6c

†
7c

†
8Þj0i;

jGHZ5ðz1; z2Þi ¼ ðz1c†1c†2c†3c†4c†5 þ z2c
†
6c

†
7c

†
8c

†
9c

†
10Þj0i:

ð71Þ

We also examine the generalized spin states with k singly
occupied electrons in k spinful orbitals [111]:

jSPIN3ðfzngi ¼ ðz1c†1↑c†2↑c†3↑ þ z2c
†
1↑c

†
2↓c

†
3↓

þ z3c
†
1↓c

†
2↑c

†
3↓ þ z4c

†
1↓c

†
2↓c

†
3↑Þj0i ð72Þ

and

jSPIN4ðfzngÞi ¼ ðz1c†1↑c†2↑c†3↑c†4↑ þ z2c
†
1↑c

†
2↑c

†
3↓c

†
4↓

þ z3c
†
1↑c

†
2↓c

†
3↑c

†
4↓ þ z4c

†
1↑c

†
2↓c

†
3↓c

†
4↑

þ z5c
†
1↓c

†
2↑c

†
3↑c

†
4↓ þ z6c

†
1↓c

†
2↑c

†
3↓c

†
4↑

þ z7c
†
1↓c

†
2↓c

†
3↑c

†
4↑ þ z8c

†
1↓c

†
2↓c

†
3↓c

†
4↓Þj0i:
ð73Þ

For each class of wave functions, we randomly sample
1000 sets of coefficients in a p-dimensional unit space,
where p is the number of coefficients in each class:

ðz1;…; zpÞ ¼ ðcos α1; sin α1 cos α2;…;

sin α1… cos αp−2; sin α1… sin αp−1Þ: ð74Þ

These sampled states are automatically normalized.
As shown in Fig. 10, the 2CRDM eigenvalues for all

samples within each class of state are shown as violin plots.
For any k-particle entangled states, the simulated λmax
values fall within the bound of ðkþ 0.5Þ=2, thereby
validating the μðkÞ derived in Eq. (36). Because of the
high parameter-space dimension for jSPIN4i, our samples
do not reach its upper-bound value but clearly exceed the
bound for 3-producible states. It is important to recognize
that λmax, as an entanglement witness, indicates only the
lower bound of entanglement depth for a given many-body
state. For instance, a three-particle entangled jGHZ3i state
may exhibit λmax < 0.75 for many sampled coefficients,
where the witness may be less efficient and conclude only
that the state is at least two-particle entangled. Determining
the precise entanglement depth necessitates comprehensive
information about the entire many-body wave function and
cannot be inferred from 2CRDM and RIXS spectra, which
is beyond the scope of this paper.

B. Extended Hubbard model
with mixed-sign interactions

While the few-body quantum states provide a clear
statistical distribution for the entanglement witness λmax
and validate its bound, electronic wave functions in
quantum materials, especially at the thermodynamic limit,
remain inaccessible by solid-state measurements. Effective
electronic Hamiltonians, where band structures and inter-
actions are codetermined by ab initio simulations and
experimental measurements, provide a widely accessible
description of materials. Validating the RIXS-accessible
witness also requires an electronic Hamiltonian that defines
both the ground state and all excited states. Therefore, we
turn to material-relevant tight-binding models and first
consider interacting electrons in a 1D chain.
The simplest description of electronic interaction is the

Hubbard model, which simplifies Coulomb repulsions into
an on-site U. Extending this model, we further include the
nearest-neighbor interaction V, leading to the extended-
Hubbard model (EHM):

H¼−t
X
hiji;σ

ðc†iσcjσþH:c:ÞþU
X
i

ni↑ni↓þV
X

hiji;σ;σ0
niσnjσ0 ;

ð75Þ

where niσ ¼ c†iσciσ denotes the electron density at site i
with spin σ. Because of the relevance for 1D cuprate chains
like Ba2−xSrxCuO3þδ [115], we focus on the mixed-sign
interactions with repulsive U > 0 and attractive V < 0.
We first consider the EHM at half filling, where the spin-

density wave (SDW) phase dominates, except for a small
region of the triplet superconductivity phase [116]. To
better approximate the thermodynamic limit, we simulate a
128-site 1D EHM using the density matrix renormalization
group (DMRG). We select the 36 sites in the center of the
chain to measure the 2CRDM, which ensures approxi-
mately translational invariance. As shown in Fig. 11(a),
the maximal eigenvalue λmax obtained from the 2CRDM of
the EHM is 0.4 for the Hubbard model with U ¼ 1.6t,
indicating an at least two-particle entangled state. Because
of the relatively weak interaction, λmax lies in the middle of
the bounds for separable and 2-producible states. This
witnessed entanglement depth aligns with the result
obtained from the spin QFI at q ¼ π. As shown in
Fig. 11(b), the QFI density is around 1.6, also in the
middle of these two bounds, witnessing a bipartite spin
state. This consistency is expected in the half-filled system
with an SDW ground state, where spin excitations domi-
nate. It is worth noting that the half-filled Hubbard model
exhibits a quasi-long-range SDW state, causing a loga-
rithmic divergence of the QFI density with the system size
at zero temperature [89]. To avoid this singularity, the
comparison between λmax and QFI here is restricted to a
finite system of the same size. This divergence is removed
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at any finite temperature and, therefore, irrelevant for
experimental measurements.
Including the attractive V suppresses spin correlations by

favoring the triplet pairing instability, which is reflected in the
reduction of both the QFI and λmax. A previous DMRG study
has demonstrated that the Luttinger parameter Kρ exceeds 1
at around V ¼ −t for this chosen U value [116]. As a result,
the triplet superconductivity becomes the dominant charge-
2e correlation, replacing the SDW. Although the triplet
correlation also exhibits a logarithmic divergence with the
system size in this phase, its absolute strength of correlations
is much weaker than the spin correlations and is negligible
in a finite system. The interplay between the SDW and
triplet superconductivity state accounts for the decrease in
both λmax and QFI with the presence of V.
According to the derivations in Sec. II C, the leading

nonlinear effects in RIXS measure only the three- and four-
point correlations in the form of Eq. (15) and do not access
all elements in the 2CRDM. To test the effectiveness of
witnessing entanglement with incomplete elements, we
further simulate the RIXS-measured 2CRDMs and evaluate
their maximal eigenvalues λmax. As shown in Fig. 11(a),
the RIXS-measured λmax closely approximates the exact
results, demonstrating the dominant role of these short-
range correlations in the eigenvalue. Only a slight discrep-
ancy is observed for small V, where the EHM exhibits
quasi-long-range order.
Upon doping, the ground state of the EHM evolves into a

gapless state, diverging from its SDW configuration. For
U ¼ 4t, the 2CRDM eigenvalue λmax decreases, indicating
a potentially less entangled ground state [see Fig. 11(c)].
Despite the reduction, λmax still witnesses a (at least)

two-particle entangled state. This aligns with the expect-
ation that a Luttinger liquid cannot be equated to a Fermi
sea, meaning the connected part of correlations is non-
vanishing. In contrast, the QFI density fails to witness any
entanglement in the doped scenarios, as two-particle spin
excitations cease to dominate within the Luttinger liquid
state, rendering spin QFI insensitive to single-particle
fermionic excitations. Moreover, as the nearest-neighbor
interaction V increases, we observe a dip in λmax near
V ¼ −0.9t, coinciding with the Luttinger parameter Kρ

crossing 1, indicating a shift in the dominant charge-2e
excitation transitions toward triplet pairing. This transition
is a crossover rather than a broken-symmetry phase
transition due to the system maintaining its gapless
Luttinger liquid nature [116]. The λmax reflects the strengths
of either quasi-long-range correlations on the two sides of
the crossover, resulting in a nonmonotonic dependence
on V. Conversely, the QFI density remains nearly constant
across varying V strengths, highlighting the QFI’s ineffec-
tiveness in a doped, gapless system.
When comparing the exact λmax with the approximated

value derived from RIXS-measured RDM elements, we
find that the latter significantly underestimates λmax, espe-
cially when contrasted with the half-filled system shown in
Fig. 11(a). This discrepancy can be attributed to the slower
spatial decay of single-particle correlations hcic†ji in the
Luttinger liquid state, while the RIXS-measured RDM
elements truncate in distance. Nevertheless, despite this
underestimation, the RIXS-measured λmax effectively iden-
tifies an entangled state and captures crossover-induced
nonmonotonicity, unlike the QFI results. Importantly, since
λmax indicates the lower bound of entanglement, an

FIG. 11. (a) The maximal eigenvalue of the 2CRDM, evaluated using the exact ground-state wave function (dark blue) and the RIXS-
measured correlations (light blue), for a half-filled EHM with U ¼ 1.6t and varying V values. (b) The spin QFI density for the same
model as in (a). The upper bar indicates the ground-state phases identified in Ref. [116], while background darkness indicates the bounds
of different k-producible states. (c)–(f) The V dependence for the two entanglement witnesses, similar to (a) and (b), but for the 50%
doped EHM with (c),(d) U ¼ 4t and (e),(f) U ¼ 8t. All simulations are performed using zero-temperature DMRG on a 128-site chain,
with the correlation measurements restricted to the central 36 sites.
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underestimating λmax through RIXS does not compromise
the validity of the bound.
We delve deeper into the impacts of correlations by

examining the U ¼ 8t system. As shown in Fig. 11(e),
stronger interactions lead to a reduced Luttinger parameter
Kρ and, therefore, more pronounced, longer-range spin
correlations. This is evidenced by the enhanced λmax values
compared to those in the U ¼ 4t scenario. However, these
values remain well below the upper bound for two-particle
entangled states and, thus, do not alter the witnessed
entanglement depth. Concurrently, the QFI density remains
largely unchanged and continues to fail in witnessing
entanglement, highlighting its limitations in doped systems.
Additionally, the discrepancies between the RIXS-measured
λmax and the exact values are more evident in the U ¼ 8t
system due to the enhanced and extended spin correlations.
Despite this, the conclusion that a two-particle entangled
state is witnessed remains unchanged.

C. Triangular lattice Hubbard model

We expand our exploration to systems beyond 1D,
particularly focusing on frustrated geometries where we
expect to find highly entangled many-body wave functions.
Here, we use the triangular lattice as an example, corre-
sponding to the quantum spin liquid (QSL) candidate
materials κ-ðETÞ2Cu2ðCNÞ3 [117]. Figure 12(a) shows
the results obtained from the Hubbard model on a 72 × 3
three-leg triangular cylinder. Previous research has delin-
eated its phase diagram, identifying metallic, QSL, and
dimer-order phases [118]. Our analysis reveals that λmax
generally increases with the interaction strength U due to
stronger electronic correlations. In the strong-coupling limit,
the system forms a dimer-order state with period-2 spin
patterns, resulting in six-site dimer supercells on the three-leg
ladder lattice. Each supercell can be regarded as a partition
Mp in Eq. (29), which hosts six electrons and the maximally
possible entanglement depth is 6, if it is irreducible. Here,
the 2CRDM reaches 1.35, exceeding the upper bound for a
three-particle producible state (5=4), thereby witnessing
at least a four-particle entangled state. This aligns with the
size of individual dimer supercells, considering that each
partition may not be maximally entangled.
As U decreases to 12t, the ground state transitions to a

gapless QSL phase [118]. In this regime, λmax exhibits a
noticeable increase, indicating the enhanced entanglement
of wave functions due to the frustrated geometry. Notably,
the entanglement witness only characterizes entanglement
depth without differentiating between long-range and
short-range entanglement. Consequently, the witnessed
depth in the QSL phase is also at least 4, similar to that
in the strong-coupling regime of the dimer-order state.
Both these two correlated phases are dominated by spin
excitations. As a result, the spin QFIs display the same U
dependence as λmax and quantitatively witness the same

three-particle and four-particle entangled states in these
two phases [see Fig. 12(b)].
As the interaction strength further decreases toU ∼ 7t, the

system transitions to ametallic ground state [118].Despite the
absence of a single-particle gap, this metallic state remains
correlated and distinguishable from a simple Fermi sea. The
2CRDM eigenvalue λmax captures this correlation, consis-
tently witnessing an at least two-particle entangled state
throughout the phase diagram for U > 0. In stark contrast,
the QFI density, evaluated from the ground state of the
triangular-lattice Hubbard model, falls below 1 (the upper
bound for separable states) for U < 4t. Thus, the spin QFI
fails to recognize the correlated nature of this metallic state
due to the diminished spin excitations within this regime.
We further analyze the entanglement entropy, which

quantifies the entanglement of a many-body state across a
given partition. The scaling behavior of entanglement
entropy with system dimensions has been widely used
for identifying gapless modes and topological order
[24,25,119]. Here, we calculate the von Neumann entan-
glement entropy at the center of the quasi-1D system:

Sðx ¼ Lx=2Þ ¼ −Trðρx log ρxÞ: ð76Þ

FIG. 12. (a) The 2CRDM witness using the maximal eigen-
values λ, evaluated by the exact ground-state wave functions
(dark blue) and derived from RIXS spectra (light blue) for the
triangular-lattice Hubbard model in a 72 × 3 cylinder. The upper
bar indicates the ground-state phases for different U’s, adapted
from Ref. [118]. (b) The spin QFI density evaluated using the
ground states of the same model. The witnessed entanglement
depths are indicated by the background darknesses in (a) and (b).
(c) The von Neumann entanglement entropy Sðx ¼ Lx=2Þ calcu-
lated the center of the system.
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Here, ρx is the reduced density matrix for a subsystem of
length x, with x set to Lx=2 ¼ 36. To avoid confusion, ρx is
different from, though related to, the two-particle RDM
hcicjðckclÞ†i used in other contexts of this paper [99]. As
shown in Fig. 12(c), the entanglement entropy is low in the
strong-coupling limit (dimer order) but increases rapidly
as the system becomes gapless. Because entanglement
entropy is specific to a particular partition in a chosen
basis (typically real-space orbitals), it is less effective in
depicting the basis-invariant entanglement depth. The rise
in Sðx ¼ Lx=2Þ for smallU indicates that electrons become
less localized, making the real-space basis less effective for
describing the many-body wave function.
Recognizing the advantage of the 2CRDM entanglement

witness over QFI and entropy, we further assess the
accuracy of RIXS-derived eigenvalues. In a manner similar
to the 1D EHM example in Sec. IV B, RIXS precisely
captures the λmax for systems with relatively strong inter-
actions, i.e., in the QSL and dimer-order phases. In
these phases, electrons are localized into spins, making
the three- and four-particle correlations derived from the
nonlinearity of RIXS in Eq. (15) sufficiently accurate to
approximate most RDM elements. The RIXS-measured
λmax starts to deviate from the exact value upon entering the
metallic phase, where electrons become less localized.
Nevertheless, unlike the doped systems discussed in
Sec. IV B, the finite interaction and half-filled configura-
tion in the metallic phase restrict electron delocalization,
resulting in a RIXS-measured error of just 1%. Across all
simulated model parameters, the RIXS-measured λmax
consistently witnesses the same entanglement depth as
the exact λmax, further emphasizing the reliability of this
fermionic entanglement witness.

V. SUMMARY AND OUTLOOK

This work advances the field of spectral characterization
of quantum entanglement by developing a robust theoreti-
cal framework that extends beyond the QFI traditionally
used for distinguishable modes. For indistinguishable
fermions, a reliable entanglement witness must be resilient
to fermionic antisymmetry, invariant under basis trans-
formations, and exhibits monotonic scaling with entangle-
ment depth. We propose a practical and experimentally
viable entanglement witness through x-ray scattering tech-
niques. As detailed in Sec. II, high-precision RIXS spectra
enable the measurement of four-fermion correlations
hcicjðckclÞ†i, leveraging information from two-momentum
distributions. By subtracting the two-fermion correlations
hcic†ji, accessible via ARPES, we obtain the dominant
elements of the 2CRDM. Derivations in Sec. III reveal that
the maximal eigenvalue (λmax) of the 2CRDM fulfills the
stringent criteria for a fermionic entanglement witness.
Utilizing this witness tool, we investigate representative
systems in Sec. IV, demonstrating its capability to

characterize entanglement in extended and triangular
Hubbard models. Notably, we observe that the spin QFI
fails to characterize entanglement in phases where spin
fluctuations are not dominant, while our electronic entan-
glement witness remains effective across all studied phases.
With the feasibility of implementation using current x-ray
scattering techniques, this approach provides a versatile
tool for detecting entangled states in quantum materials and
advancing material design for quantum technologies.
In practice, extracting four-fermion correlations requires

performing a the Fourier transformation on the incident-
photon momentum and energy. As detailed in Sec. II C, this
process requires independent control of both incident
energy and the momentum relevant to electronic excita-
tions. This is feasible under the assumption that electronic
states are effectively confined to separated layers or chains,
a condition often met in strongly correlated materials with
significant quantum fluctuations. For these materials, the
collection of high-quality two-momentum information is
enabled by rotating both the sample and the spectrometer.
This approach is commonly used to characterize collective
excitations such as plasmons and charge density waves
[83–86]. For systems with 3D electronic dispersions,
employing a single Lorentzian approximation for the ωi
dependence of RIXS spectra can approximate the four-
fermion correlations needed for entanglement witness.
Moreover, utilizing the continuous polarization dependence
of the incident and scattered photons offers an alternative
strategy, potentially reducing reliance on the qi dependence
and broadening applicability to molecular systems without
translational symmetry. Although these strategies are
beyond our scope, they highlight promising avenues for
future exploration in specific experimental systems.
In addition, separating various correlations requires

different weighted integrals through the detuning of inci-
dent energy, as specified in Eq. (16). Accurate evaluation of
these integrals requires information about the magnitude of
the core hole lifetime (Γ) and the core level hopping (tc). In
typical RIXS experiments, Γ can be estimated through the
spectral broadening along the ωi axis or the corresponding
x-ray absorption spectrum, while tc can be estimated by
various weighted integrals over ωi. In the worst case, when
the resonance detuning is unavailable, the energy integral
gives a superposition of a pair of four-fermion correlations,
following Eq. (15). In this case, a compromised approach
to estimate the individual elements in RDM is using the
Cauchy-Schwarz inequality

1

2
ðhcnσ0

1
c†nσ1cmσ2c

†
m−δþδ0;σ0

2
iþhcnþδ;σ0

1
c†nσ1cmσ2c

†
mþδ0;σ0

2
iÞ2

≤ jhcnσ0
1
c†nσ1cmσ2c

†
m−δþδ0;σ0

2
ij2þjhcnþδ;σ0

1
c†nσ1cmσ2c

†
mþδ0;σ0

2
ij2:

ð77Þ

Thus, it gives the lower bounds for each element.
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The extraction of four-fermion correlations from RIXS
spectra depends largely on the ratio between the core-hole
lifetime and the core-hole hopping timescales. In this work,
we assumed a relatively small ratio, which is typical
for transition-metal oxides, enabling the spectrum to be
expanded to the leading order of Oðt2c=Γ2Þ. For represen-
tative correlated materials—such as cuprates, nickelates,
manganates, and ruthenates—this ratio is estimated to be
around t2c=Γ2 ∼ 10%. With future improvements in RIXS
resolution and measurement precision (to below 1%),
higher-order terms such as Oðt4c=Γ4Þ experimentally acces-
sible, allowing additional elements of the 2CRDM to be
measured beyond those defined in Eqs. (22) and (23).
Additional spectroscopic techniques, including Raman
scattering and pair photoemission spectra, offer comple-
mentary means of probing these elements. However, their
reliance on single-momentum dependencies restricts their
utility for disentangling specific four-point correlations.
Instead, these techniques are best suited for constraining
the bounds of otherwise inaccessible RDM elements, much
like the method outlined in Eq. (77).
The capability to measure the two-particle RDM and its

cumulants has broader implications than just witnessing
entanglement. According to Rosina’s theorem, these
RDMs for a nondegenerate ground state can reconstruct
the many-electron wave function for systems with only
two-particle interactions [103,105,120]. Although the spe-
cific reconstruction method is complex and requires matrix
elements beyond the reach of RIXS, it suggests that other
significant observations, including energy, pairing correla-
tion, and polarizability, can also be reconstructed using
these RDMs. In terms of entanglement depth, other
observables apart from maximal eigenvalues can also be
used to witness entanglement, provided they are invariant
under single-particle basis transformations and increase
with the entanglement depth. For example, the Frobenius

norm of OðconÞ
ijkl , or equivalently the second-order trace

Tr½ðOðconÞÞ2�, scales quadratically with k and is separable
for disconnected partitions according to Eq. (33). The
upper bound of these observables for a k-producible state
can be derived similarly to Sec. III, allowing them to
witness fermionic entanglement. However, as they
intrinsically mix λmax with other eigenvalues, the bounds
derived from these observables are less tight than those
from λmax. Moreover, in systems with specific sym-
metries, like spin SU(2) symmetry, the allowed form
of wave functions can be restricted and a tighter bound
achievable. We leave the exploration on specific materials
for future studies.
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APPENDIX A: DETAILS OF RIXS SIMULATIONS

The examples of RIXS calculations discussed in Sec. II
employ the single-band Hubbard model, with the valence-
electron Hamiltonian defined as

H ¼ −t
X
iσ

ðc†iσciþ1;σ þ H:c:Þ þ U
X
i

ni↑ni↓: ðA1Þ

The nearest-neighbor hopping amplitude t governs the
band structure, while the on-site Coulomb repulsion U
controls the electronic correlations within the model.
To incorporate the x-ray processes, the full Hamiltonian

H0 includes additional terms that account for core holes,
as described in Eq. (4) and restated here:

H0 ¼ Hþ
X
m

�X
ασ

Eedgepmασp
†
mασ þHðSOCÞ

m

�

−Uc

X
m;α

X
σ;σ0

c†mσcmσpmασ0p
†
mασ0 þ T c: ðA2Þ

The example presented in Sec. II B focuses on the tran-
sition-metal L-edge RIXS, where core levels correspond to
the 2px;y;z orbitals of transition metal atoms. The core-level
spin-orbit coupling is given by

HðSOCÞ
m ¼ λ

X
αα0

X
σσ0

p†
mασχσσ

0
αα0pmα0σ0 : ðA3Þ

In the simulations presented in the main text, the core-hole
potentialUc is consistently set to 4t [78,121,122]. The edge
energy Eedge is chosen as 938 eV, corresponding to the
Cu L-edge x-ray absorption, and the spin-orbit coupling λ
of the core states is set to 13 eV [121].

APPENDIX B: VARIOUS INTEGRALS
OF RIXS SPECTRA

This section details the spectral integrals derived in
Sec. II B and their corresponding momentum dependence.
We decompose the intermediate-state Hamiltonian H0 in
Eq. (A2) into H0

0 þ T c and treat the core-level kinetic

LIU, XU, LIU, and WANG PHYS. REV. X 15, 011056 (2025)

011056-22



Hamiltonian T c as a perturbation. Many of the integrals
derived in this section take the form

Z
∞

−∞

ðx2Þl
ðx2 þ Γ2Þl

dx
ðx − E1 − iΓÞaþ1ðx − E2 þ iΓÞbþ1

; ðB1Þ

where aþ 1 and bþ 1 indicate the orders of the poles in
the complex plane, with Γ > 0. We denote this standard

integral as ΞðlÞ
ab ðE1; E2;ΓÞ. The residue theorem is

employed to derive the closed-form expression of these
integrals. For l ¼ 0, the integral reduces to

Ξð0Þ
ab ðE1; E2;ΓÞ ¼

ðaþ bÞ!
a!b!

2πið−1Þa
ðE1 − E2 þ 2ΓiÞaþbþ1

; ðB2Þ

while for nonzero l the equation becomes complicated.
The zeroth-order spectrum in Eq. (11) excludes T c, with

H0 in the propagator being replaced by H0
0. To evaluate its

integral, we expand the intermediate state in terms of the
eigenstates of H0

0, denoted as fjΨig. The zeroth-order
integral can thus be expressed as

ZZ
Ið0Þðq;ωi;ωÞdωidω

¼ 1

N2

X
m;n

X
Ψ1;Ψ2

eiq·ðrm−rnÞhGjD†
nεi jΨ1ihΨ2jDmεi jGi

hΨ1jDnεsD
†
mεs jΨ2iΞð0Þ

00

	
Eð0Þ
Ψ1
; Eð0Þ

Ψ2
;Γ



¼ 2πi

N2

X
m;n

X
Ψ1;Ψ2

eiq·ðrm−rnÞRehGjD†
nεi jΨ1ihΨ2jDmεi jGi

hΨ1jDnεsD
†
mεs jΨ2i

h
Eð0Þ
Ψ1

− Eð0Þ
Ψ2

þ 2Γi
i
−1

≈
π

N2Γ

X
m;n

eiq·ðrm−rnÞ
X
σ1;σ01

X
σ2;σ02

Mσ1σ2
σ0
1
σ0
2

hGjcnσ0
1
c†nσ1cmσ2c

†
mσ0

2
jGi:

ðB3Þ

The last step yields a result identical to the zeroth-order
integral Eq. (7), which assumes immobile core holes.
Next, we proceed with the first-order spectrum in

Eq. (12), stemming from the cross term between the

jΨð0Þ
int i and jΨð1Þ

int i. By expanding in the eigenstates of
H0

0, the integral ∬ Ið1Þðqi;q;ωi;ωÞdωidω transforms into

1

N2

X
m;n

X
m0;n0

X
Ψ1;Ψ2

eiqi ·ðrm0−rn0 Þ−iqs·ðrm−rnÞhΨ1jDnεsD
†
mεs jΨ2i

×
h
hGjD†

n0εi
T cjΨ1ihΨ2jDm0εi jGiΞð0Þ

01

	
Eð0Þ
Ψ1
; Eð0Þ

Ψ2
;Γ



þ hGjD†

n0εi
jΨ1ihΨ2jT cDm0εi jGiΞð0Þ

10

	
Eð0Þ
Ψ1
; Eð0Þ

Ψ2
;Γ


i

¼ 2πi
N2

X
m;n
m0 ;n0

X
Ψ1;Ψ2

eiqi ·ðrm0−rn0 Þ−iqs·ðrm−rnÞhΨ1jDnεsD
†
mεs jΨ2i

hGjD†
n0εi

T cjΨ1ihΨ2jDm0εi jGi − hGjD†
n0εi

jΨ1ihΨ2jT cDm0εi jGi
ðEð0Þ

Ψ1
− Eð0Þ

Ψ2
þ 2ΓiÞ2

≈
πtc

2N2Γ3

X
σ1;σ01

X
σ2;σ02

Mσ1σ2
σ0
1
σ0
2

Re

�X
m;n;δ

eiq·ðrm−rnÞþiqi ·rδðhcn−δ;σ0
1
c†nσ1cmσ2H

0
0c

†
mσ0

2
i − hcnσ0

1
H0

0c
†
nσ1cmσ2c

†
mþδσ0

2
iÞ
�
: ðB4Þ

It is crucial to observe that the leading-order imaginary part of the last step cancels out due to the symmetry when the
two terms are exchanged. Therefore, Eq. (B4) reproduces the Eq. (14) of the main text. While the correlations do not
directly contribute to the RDM, this first-order spectral integral includes a phase factor eiqi ·rδ, allowing it to be
distinguished from the zeroth-order and second-order integrals. This distinction means that Eq. (B4) does not require
actual computation in practice.
Finally, the second-order spectral integral contains three terms corresponding to the integral of the first-order intermediate

state jΨð1Þ
int i and the cross terms between the zeroth- and second-order intermediate states. Similar to the above derivations,

the integral ∬ Ið2Þðqi;q;ωi;ωÞdωidω corresponds to

1

N2

X
m;n
m0 ;n0;

X
Ψ1;Ψ2

eiqi ·ðrm0−rn0 Þ−iqs·ðrm−rnÞhΨ1jDnεsD
†
mεs jΨ2i

h
hGjD†

n0εi
T cjΨ1ihΨ2jT cDm0εi jGiΞð0Þ

11

	
Eð0Þ
Ψ1
; Eð0Þ

Ψ2
;Γ




þ hGjD†
n0εi

T 2
cjΨ1ihΨ2jDm0εi jGiΞð0Þ

02

	
Eð0Þ
Ψ1
; Eð0Þ

Ψ2
;Γ



þ hGjD†

n0εi
jΨ1ihΨ2jT 2

cDm0εi jGiΞð0Þ
20

	
Eð0Þ
Ψ1
; Eð0Þ

Ψ2
;Γ


i
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¼ 2πi
N2

X
m;n
m0 ;n0

X
Ψ1;Ψ2

eiqi·ðrm0−rn0 Þ−iqs·ðrm−rnÞhΨ1jDnεsD
†
mεs jΨ2i

×
hGjD†

n0εi
T 2

cjΨ1ihΨ2jDm0εi jGi þ hGjD†
n0εi

jΨ1ihΨ2jT 2
cDm0εi jGi − 2hGjD†

n0εi
T cjΨ1ihΨ2jT cDm0εi jGi

ðEð0Þ
Ψ1

− Eð0Þ
Ψ2

þ 2ΓiÞ3

≈
πt2c

2N2Γ3

X
σ1 ;σ

0
1

σ2 ;σ
0
2

Mσ1σ2
σ0
1
σ0
2

Re

�X
m;n

X
δ;δ0

eiq·ðrm−rnÞþiqi ·ðrδ0−rδÞðhcnþδ;σ0
1
c†nσ1cmσ2c

†
mþδ0;σ0

2
i − hcnσ0

1
c†nσ1cmσ2c

†
m−δþδ0;σ0

2
iÞ
�
; ðB5Þ

reproducing the expression of Eq. (15) in the main text.

The phase factor eiqi ·ðrδ−rδ0 Þ is sufficient to distinguish the
second-order contribution from the zeroth- and first-order
counterparts, yet it cannot separate the two types of four-
fermion correlations in Eq. (B5). To address this, it
becomes necessary to consider their energy distributions
prior to integration. It is important to note that

ReΞð1Þ
11 ðE1; E2;ΓÞ ≈

π

8Γ3
; ðB6Þ

whereas

ReΞð1Þ
02 ðE1; E2;ΓÞ ≈

π

64Γ5
ð4E2

1 − 3E1E2 − 12E2
2Þ;

ReΞð1Þ
20 ðE1; E2;ΓÞ ≈

π

64Γ5
ð4E2

2 − 3E1E2 − 12E2
1Þ: ðB7Þ

Thus, by introducing an energy-weighted integral for
the second-order term Ið2Þ, specifically with the weight
ωi

2=ðωi
2 þ Γ2Þ, the leading-order contribution becomes

ZZ
ωi

2

ωi
2 þ Γ2

Ið2Þðqi;q;ωi;ωÞdωidω

≈
1

N2

X
m;n
m0 ;n0

X
Ψ1;Ψ2

eiqi ·ðrm0−rn0 Þ−iqs·ðrm−rnÞhGjD†
n0εi

T cjΨ1i

hΨ1jDnεsD
†
mεs jΨ2ihΨ2jT cDm0εi jGiΞð1Þ

11

	
Eð0Þ
Ψ1
; Eð0Þ

Ψ2
;Γ



≈

πt2c
8N2Γ3

X
σ1;σ01

X
σ2;σ02

Mσ1σ2
σ0
1
σ0
2

Re
X
m;n

X
δ;δ0

eiq·ðrm−rnÞþiqi ·ðrδ0−rδÞ

× hcnþδ;σ0
1
c†nσ1cmσ2c

†
mþδ0;σ0

2
i: ðB8Þ

It includes only the four-point correlation term, thereby
reproducing Eq. (16) from the main text.
It is also possible to consider alternative weighted

integrals, such as Ξð2Þ
11 and Ξð2Þ

20=02. These integrals produce

Oðt2c=Γ3Þ terms, but with coefficients distinct from those in
Eq. (B5). By combining these integrals, one can separate
the contributions of three-point and four-point correlations.

Practically, using multiple weighted integrals can help
mitigate the uncertainties associated with the estimation
of Γ and tc. In addition, while we focus the integrals for Ið0Þ,
Ið1Þ, and Ið2Þ, we have confirmed that all higher-order
integrals (i.e., IðmÞ for m > 2) produce correlations with
prefactors OðΓ−5Þ or smaller. Therefore, they can be
neglected in practice, as the focus is on the leading
nonlinear term Oðt2c=Γ3Þ in RIXS.

APPENDIX C: AN ALTERNATIVE FORM OF
THE FLATTENED MATRIX FROM THE 2CRDM

In the main text, we chooseOðconÞ
ðikÞðjlÞ as the form of matrix

flattened from the 2CRDM tensor OðconÞ
ijkl , due to its

favorable properties regarding the maximal eigenvalues
derived in Sec. III C. Given the symmetry of the tensor,
there is an alternative, and nonequivalent convention to
flatten 2CRDM into a matrix: grouping the i and j (indices
for annihilation operators) as the row index and using the k
and l (indices for creation operators) as the column index.
As illustrated in Fig. 13, this alternative flattened matrix,

denoted as OðconÞ
ðijÞðklÞ, exhibits different distributions of

nonzero elements compared to the OðconÞ
ðikÞðjlÞ. This difference

is mainly reflected by the significant diagonal values in

OðconÞ
ðijÞðklÞ, corresponding to the situation for i ¼ k and j ¼ l.

Here, the element hcicjðckclÞ†i simplifies to −hc†i cic†jcji,
which can be measured by spin and charge structure factors
(with spin flavors are absorbed in these indices). Despite
this structural difference, the accessibility of RIXS spectra
to nonzero matrix elements remains unchanged.
To show why the eigenvalues obtained from this flat-

tened matrix cannot be used as an entanglement witness,
we follow the same strategy as Sec. III C and derive their
upper bounds. To differ from the λmax obtained from the

OðconÞ
ðikÞðjlÞ matrix in the main text, we denote the eigenvalues

obtained from OðconÞ
ðijÞðklÞ as λ̄.

For a general 2-producible states, representable as the

Slater decomposition in Eq. (39), the matrix OðconÞ
ðijÞðklÞ has
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several small block-diagonal subspaces, leading to trivial
eigenvalues of 0 and −2z2i z2j . The major block that may
carry entanglement leads to an rth-order eigenequation:

λ̄r þ a1λ̄r−1 þ � � � þ ar ¼ 0; ðC1Þ

with coefficients

am ¼ 2m
X

S¼fj1 ;…;jmg
S⊆f1;…;rg

z2j1z
2
j2
…z2jm

×

"
z2j1z

2
j2
…z2jm −

X
fi1;…;im−1g⊆S

z2i1…z2im−1

#
: ðC2Þ

Similar to the discussion in the main text, the extremum
eigenvalues should appear when all zj are the identical.
Thus, we set z2j ¼ 1=r and the coefficients become

am ¼
�

r

m

�
2m

rm

�
1

rm
−

m
rm−1

�
: ðC3Þ

Substituting Eq. (C3) into Eq. (C1), we obtain the equation
for extremum eigenvalues:

�
λ̄max=min − 2þ 2

r2

��
λ̄max=min þ

2

r2

�
r−1

¼ 0: ðC4Þ

Therefore, the maximal eigenvalue λ̄max ¼ 2 − 2=r2 for a
2-producible state. Unlike the property of λmax, here the
λ̄max reaches its upper bound (i.e., 2) at r ¼ ∞.
To verify this conclusion, we randomly sample 1000

2-producible states jN2i and present the obtained maximal
eigenvalues λ̄max in Fig. 14. With r ¼ 2 in jN2i, all
simulated λ̄max fall under 1.5, consistent with the above
conclusion for 2-producible states.
For k > 2, if we still employ the jGHZki states,

i.e., Eq. (62), as references, the eigenvalues exhibit trivial
solutions including 0, −2z2i z2j , and 2ðz2i − z4i Þ for all k > 2

and r > 1. This leads to λ̄max=min ¼ �1=2.
It is likely that the GHZ states are not maximally

entangled in the context of the alternative flattened

OðconÞ
ðijÞðklÞ. Therefore, we further examine the jSPIN3i and

jSPIN4i states. As shown in Fig. 14, their maximal
eigenvalues are all bounded by 1.5 for half-filled systems
(r ¼ 2), equal to that of 2-producible states. Since the state
jN2i can be regarded as a special case in the class of
jSPIN3i and jSPIN4i states, it is not surprising that the

FIG. 14. The distribution of the maximal eigenvalue λ̄max

obtained from OðconÞ
ðijÞðklÞ for random trial states across various

classes of wave functions. The shaded area indicates the range of
eigenvalues for 2-producible states, while the dashed lines denote
the upper bounds reached by different fillings.

FIG. 13. Upper triangle: values and distribution of elements in

the flattened matrix OðconÞ
ðijÞðklÞ, with point sizes corresponding to

the scale of the values. Lower triangle: matrix elements that can
be measured by spin or charge structure factors (red) and by
RIXS (red and blue). The matrix and its measurability are
symmetric when transposing the rows (i and j indices) and
columns (k and l indices). This example is drawn from same
system as Fig. 9.
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upper bound of jN2i can be reached. Notably, these upper
bounds exceed those obtained from the jGHZki states
(i.e., 1=2).
Therefore, although the eigenvalues of the matrix

OðconÞ
ðijÞðklÞ are also upper bounded, generally by the total

electron number Ne [75], they are not ideally suited for
witnessing entanglement, because these bounds do not
exhibit a monotonic increase with the entanglement
depth k, as observed in the GHZ state. While it is possible
that a tight and monotonic upper bound could exist for
general k-producible states in forms significantly different
from the GHZ state, deriving a general analytical form
similar to Sec. III C for such cases remains a challenge. For
example, Ref. [75] has revealed that the large eigenvalues
of this alternative flattened 2CRDM matrix are associated
with the off-diagonal long-range order (ODLRO), signaling
strong electron pair correlations in superconductivity.
This connection suggests a potential way to witness
entanglement depth using extreme eigenvalues of this
alternative form.

APPENDIX D: ENTANGLEMENT METRICS
BASED ON TENSOR SINGULAR VALUES

As discussed in Sec. III, an observable used for wit-
nessing entanglement should be invariant under the unitary
basis transformations. We employed the maximal eigen-

value λmax of the flattened matrix OðconÞ
ðikÞðjlÞ as this basis-

invariant metric. This metric is particularly advantageous
due to its compact analytical upper bound and its linear

scaling with entanglement depth, as demonstrated in
Sec. III C. More generally, the elementary unitary invari-
ants of the 2CRDM, represented as of the fourth-order

tensor OðconÞ
ijkl , are its high-order tensor singular values.

The λmax of the flattened matrix is a function of these
singular values, and the extremal singular values can
provide a more accurate reflection of the maximally
entangled components in a many-body wave function.
In this section, we numerically investigate tensor singular

values of OðconÞ
ijkl , using the Tucker decomposition and the

canonical polyadic (CP) decomposition.
The CP decomposition is a complete tensor factorization

technique that approximates a tensor as a sum of rank-one
tensors (vectors):

OðconÞ
ijkl ≈

XR
r¼1

λrUirU0
jrVkrV 0

lr; ðD1Þ

where R denotes the rank of the decomposition, λr are the
high-order singular values, and the columns of the U, U0,
V, and V 0 matrices correspond to the factorized vectors
[123]. Without an analytical formula for this decomposi-
tion, we employ the alternating least squares (ALS) method
to numerically compute the λr, iteratively updating the
factorized matrices and weights by solving a series of least-
squares problems. The rank R theoretically reaches N3 for
the exact CP decomposition but is usually truncated to
reflect the low-rank nature of the highly symmetric tensor
and to manage computational complexity [124]. Here, we

first unfold OðconÞ
ijkl along the first index and performs SVD

to determine the truncated R based on the desired variance
preservation. With this fixed R, the CP-ALS method
iteratively converges to the R sets of vectors and high-
order singular values, with the maximal singular value
serving as the metric for assessing entanglement depth.
To evaluate the distribution of CP singular values across

different systems and validate the use of the flattened
matrix λmax described in the main text, we examine the
triangular-lattice Hubbard model, whose entanglement
depth have been analyzed in Sec. IV C. As shown in
Fig. 15(a), the maximal CP singular value starts at zero
when U ¼ 0 and increases to 0.17 as U reaches 6t,
reflecting the correlations within the metallic state. A
further increase in U causes a sharp rise in λmax, peaking
at 0.45, which corresponds to the highly entangled state
in the QSL phase. After this peak, the λmax derived from
the CP decomposition drops to 0.23–0.24 for U > 12t,
indicating the transition to the dimer-order phase. This
trend in maximal tensor singular values qualitatively
matches the behavior of the maximal eigenvalues λmax
of the flattened matrix shown in Fig. 12(a). While these
tensor singular values cannot be translated into an
entanglement depth without the analytical upper bounds,
the consistent trend between these values and the

FIG. 15. The maximal tensor singular values λmax, calculated
using (a) the CP decomposition and (b) the Tucker decom-
position for the Hubbard model on a 72 × 3 three-leg triangular
cylinder. The model parameters and cluster geometry corre-
spond to those shown in Fig. 12 in the main text. The upper
bar denotes the ground-state phases for different U’s, adapted
from Ref. [118].
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flattened matrix eigenvalues validates the latter as an
effective metric for witnessing entanglement.
We further investigate the Tucker decomposition, a

technique known for its lower computational complexity
and enhanced numerical stability compared to the CP
decomposition. Unlike the CP decomposition, which
yields individual singular values, Tucker decomposition
factors the tensor into a core tensor with lower rank:

OðconÞ
ijkl ¼

XP
p¼1

XQ
q¼1

XR
r¼1

XS
s¼1

gpqrsUipU0
jqVkrV0

ls; ðD2Þ

where the core tensor gpqrs ∈RP×Q×R×S. The ALS method
is employed similarly to the CP decomposition. After
computing the core tensor, it is flattened into a matrix as
outlined in Sec. III, and its maximal eigenvalue λmax is
extracted. Using again the triangular Hubbard model as
an example, we simulate the λmax through the Tucker
decomposition across various interactions [see Fig. 15(b)].
Although λmax generally increases with U, in general, the
distinctive peak observed in the QSL phase is no longer
present. This reduction in the effectiveness of singular
values from the Tucker decomposition arises from the
incompleteness of the low-rank factorization, which
blends multiple singular values, leading to a smoothing
of extreme values.
The singular values obtained from both tensor decom-

positions are not employed for witnessing electronic
entanglement depth, primarily because their upper bounds
cannot be derived analytically in the manner established in
Sec. III. Furthermore, tensor decompositions rely on the
symmetries among all four indices, making them particu-
larly sensitive to the full spectrum of tensor elements. In
practice, RIXS spectra can access only a subset of elements
at specific locations. While these omitted elements are
typically small in magnitude, their absence disrupts the
symmetry of the tensor. This issue is compounded by the
inherent numerical instability of the ALS method, leading
to less robust solutions for tensor singular values compared
to the more reliable eigenvalues derived from a flattened
matrix. A comprehensive exploration of these tensor
properties and decomposition methods will require exten-
sive future work.
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