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Approaching coupled-cluster accuracy 
for molecular electronic structures with 
multi-task learning
 

Hao Tang    1, Brian Xiao2, Wenhao He3, Pero Subasic4, Avetik R. Harutyunyan    4, 
Yao Wang    5, Fang Liu    5, Haowei Xu    6   & Ju Li    1,6 

Machine learning plays an important role in quantum chemistry, providing 
fast-to-evaluate predictive models for various properties of molecules; 
however, most existing machine learning models for molecular electronic 
properties use density functional theory (DFT) databases as ground truth 
in training, and their prediction accuracy cannot surpass that of DFT. In 
this work we developed a unified machine learning method for electronic 
structures of organic molecules using the gold-standard CCSD(T) 
calculations as training data. Tested on hydrocarbon molecules, our model 
outperforms DFT with several widely used hybrid and double-hybrid 
functionals in terms of both computational cost and prediction accuracy 
of various quantum chemical properties. We apply the model to aromatic 
compounds and semiconducting polymers, evaluating both ground- and 
excited-state properties. The results demonstrate the model's accuracy 
and generalization capability to complex systems that cannot be calculated 
using CCSD(T)-level methods due to scaling.

Computational methods for molecular and condensed matter systems 
play essential roles in physics, chemistry and materials science, which 
can reveal underlying mechanisms of diverse physical phenomena 
and accelerate materials design1. Among various types of computa-
tional methods, quantum chemistry calculations of electronic struc-
tures are usually the bottleneck, limiting the computational speed 
and scalability2. In recent years, machine learning methods have been 
successfully applied to accelerate molecular dynamics simulations 
and improve their accuracy in many application scenarios3. Particu-
larly, machine-learned inter-atomic potentials can predict energy and 
force of molecular systems with much lower computational costs than 
quantum chemistry methods4–7. Indeed, recent advances in universal 
machine-learned potentials enable large-scale molecular dynamics 
simulation with the complexity of realistic physical systems8–11. In addi-
tion to machine-learned inter-atomic potentials, rapid advances also 

appear in another promising direction, namely, the machine learning 
density functional, which focuses on further improving the energy 
prediction towards chemical accuracy (1 kcal mol–1)12,13.

Aside from energy and force, other electronic properties that 
explicitly involve the electron degrees of freedom are also essential 
in molecular simulations14. In the past few years, machine learning 
methods have also been extended to electronic structure of molecules, 
predicting various electronic properties such as electric multipole 
moments15–17, electron population18, excited-state properties19,20, and 
the electronic band structure of condensed matter21,22. Most of these 
methods take the density functional theory (DFT) results as the training 
data, and use neural networks to fit the single-configurational repre-
sentation (either the Kohn–Sham Hamiltonian or molecular orbitals) of 
the DFT calculations15,19,21,23. Along with the rapid advances of machine 
learning techniques, the neural network predictions match the DFT 
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computational costs of CCSD(T) methods are formidably high for large 
systems. The essence of our machine learning method is to obtain the 
non-local exchange-correlation effects from a neural network, whose 
computational cost scales only linearly with system size.

To obtain the machine learning correction term, we build a neural 
network model to predict Vθ. The workflow consists of the input, con-
volutional and output layers. The input layer takes atomic configura-
tions as input, encoding them into the node features xI,in for atom 
information, and edge features fIJ,in for bond information (I, J are indices 
of atoms). The E3NN framework is employed for the convolutional layer 
(Fig. 1b; see Methods for details) due to its good performance in pre-
dicting molecular properties4. The convolutional layer outputs xI,out 
and fIJ,out, which encode E3-equivariant features of atoms and bonds, 
as well as their atomic environment. The equivariant machine learning 
correction Hamiltonian Vθ is then constructed using xI,out and fIJ,out in 
the output layer. The effective electronic structure of a molecule is 
obtained by solving the eigenvalue equations of the total Hamiltonian 
Heff = F′ + Vθ, giving ϵi, the ith energy level, and ci, the corresponding 
molecular orbital represented on atomic orbital basis set.

Multiple learning tasks
Our scheme aims to predict multiple observable molecular properties 
(more than just energy). To achieve reduced computational costs, we 
do not include information about the entire electronic Hilbert space 
as learning targets. MEHnet is instead trained on a series of molecular 
properties to capture their shared underlying representation, that 
is, the effective single-body Hamiltonian Heff. The corresponding 
single-body energy levels and molecular orbitals are used to evalu-
ate a series of ground-state properties Og according to the rules of 
quantum mechanics:

OMEHnet
g = fOg ({ϵi}, {ci}), Og = E, ⃗p ,Q,CI,BIJ, (1)

where Og goes through the ground-state energy (E), the electric dipole 
( ⃗p) and quadrupole (Q) moments, the Mulliken atomic charge28 of each 
atom CI, and Mayer bond order29 of each pair of atoms BIJ. We also 
evaluate the energy gap (first excitation energy, Eg) and static electric 
polarizability α:

EMEHnet
g = fEg ({ϵi}, {ci},G),

αMEHnet = fα({ϵi}, {ci},T).
(2)

In principle, the ground-state electronic structure does not contain 
the information on the energy gap and electric polarizability. We there-
fore use the model-output correction terms G (energy gap correction) 
and T (dielectric screening matrix) to account for the information on 
excited states and the linear response, respectively. We provide more 
details on the function forms of fOg, fEg and fα in the Methods. Note 
that these properties are all derived from the underlying electronic 
structure, so they are internally related. Multi-task learning methods 
can therefore utilize these relations to mutually enhance the model’s 
generalization capability.

The goal of our multi-task learning is to predict the properties 
listed above with coupled-cluster accuracy. Hence, the total loss func-
tion LTotal for each molecule is constructed as follows:

LTotal = lV + ∑
O∈Og∪{Eg ,α}

lO,

lO = wO ×MSEloss(OMEHnet,Olabel),

lV = wV
N2
basis

∑
Iμ, Jν

|Vθ
Iμ, Jν|

2.

(3)

Here, for each property O, lO is the the mean-square error loss between 
OMEHnet and Olabel, the MEHnet predictions (equations (1) and (2)) and 

results increasingly well, approaching chemical accuracy8,16. However, 
as a mean-field-level theory, DFT calculations themselves induce a 
systematic error that is usually several times larger than the chemical 
accuracy24, limiting the overall accuracy of the machine learning model 
trained on DFT datasets.

By comparison, the correlated wavefunction method CCSD(T) 
is considered the gold-standard in quantum chemistry25. It provides 
high-accuracy predictions on various molecular properties. Unfor-
tunately, the computational cost of CCSD(T) calculations scales 
unfavorably with system size. It can therefore only handle small mol-
ecules with up to hundreds of electrons. This urges the combination 
of CCSD(T) with machine learning methods, which, together, can 
potentially have both high accuracy and low computational cost. How-
ever, the above-mentioned machine learning methods that directly 
fit the single-configurational representation of the DFT calcula-
tions cannot be directly applied to the CCSD(T) training data. This is 
because CCSD(T) does not provide either Kohn–Sham Hamiltonians or 
single-body electronic wavefunctions due to the many-body quantum 
entanglement nature of its representation.

In this work we develop a unified multi-task machine learning 
method for molecular electronic structures. Instead of focusing solely 
on energy, our method also provides accurate predictions for vari-
ous electronic properties. By contrast to machine learning models 
trained on DFT datasets, our method learns from CCSD(T)-accuracy 
training data. The method incorporates the E3-equivariant neural 
network (E3NN)4,26, in which vectors and tensors are involved in the 
message-passing step. For brevity we refer to our method as multi-task 
electronic Hamiltonian network (MEHnet). Using hydrocarbon organic 
molecules as a testbed, our method predicts molecular energy within 
chemical accuracy as compared with both CCSD(T) calculations and 
experiments. It also predicts various properties such as electric dipole 
and quadrupole moments, atomic charge, bond order, energy gap 
and electric polarizability with better accuracy than B3LYP, one of the 
most widely used hybrid DFT functionals27. Our trained model shows 
robust generalization capability from small molecules in the training 
dataset (molecular weight < 100 unified atomic mass unit) to larger 
molecules such as naphthalene and even semiconducting polymers 
(molecular weight up to several thousands). Systematically predict-
ing multiple electronic properties using a single model with local DFT 
computational speed, the method provides a high-performance tool 
for computational chemistry and a promising framework for machine 
learning electronic structure calculations.

Results
Computational workflow
In this section we briefly describe the theoretical background 
and model architecture of the MEHnet method (see Methods for 
details). We basically use a neural network to simulate the non-local 
exchange-correlation interactions of a many-body system. A 
physics-informed approach is then used to predict multiple proper-
ties from the output of a single neural network.

Given an input atomic configuration, our goal is to acquire an 
effective single-body Hamiltonian matrix that is then used to predict 
quantum chemical properties from physics principles (Fig. 1a). First, 
a fast-to-evaluate single-configurational method such as DFT or Har-
tree–Fock is used to obtain a mean-field effective Hamiltonian, F′. Note 
that F′ is easy and fast to compute, but its accuracy is relatively low. We 
will use F′ as the starting point of our machine learning model, and the 
total effective Hamiltonian of the system Heff = F′ + Vθ is obtained by 
adding the machine learning correction term Vθ. In the current formal-
ism, F′ is obtained from a local DFT calculation, and it contains only a 
local-exchange-correlation contribution, and the correction term Vθ 
would account for the non-local exchange-correlation effects. Gener-
ally, the non-local exchange-correlation effects can be captured in 
CCSD(T) calculations. However, as mentioned before, the 
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coupled-cluster labels in the training dataset, respectively. Meanwhile, 
lV is a regularization that penalizes large correction matrix Vθ, whereas 
Nbasis is the total number of basis functions in the molecule. The weights 
wV and wO are hyperparameters whose values are listed in the Meth-
ods. The weights are chosen to balance the training tasks so that the 
training errors of all tasks decrease to satisfactory levels. Minimizing 
LTotal requires the back-propagation through the diagonalization of 
Heff (that is, calculating ∂ϵi/∂Heff and ∂ci/∂Heff), which is numerically 
unstable with direct numerical differentiation. To overcome this issue, 
we derive customized back-propagation schemes for each property 
using perturbation theory in quantum mechanics (see Methods for 
details), giving

∇θϵi = (ci)†(∇θVθ)ci

∇θci = ∑
p≠i

(cp)†(∇θVθ)ci

ϵi−ϵp
cp.

(4)

When evaluating the gradients of properties in equations (1) and (2) 
using the chain rule, terms that analytically cancel each other are 
removed in the numerical evaluation, making the scheme numeri-
cally stable.

Atomic configurations of molecules in our training dataset are 
generated by the workflow shown in Fig. 1c. Our dataset covers vari-
ous classes of hydrocarbons (saturated, unsaturated, alicyclic and 
aromatic) and molecular structures (linear, branched and cyclic), con-
taining both stable and metastable conformers with diverse types of 
carbon–carbon bonds (single, double, triple and conjugated π-bonds; 
see Supplementary Section 1). Coupled-cluster calculations are imple-
mented for various hydrocarbon molecules. The MEHnet model is 

trained on small-molecules training dataset (training domain; Fig. 1c). 
The model is then tested on both small molecules in the training domain 
but outside the training dataset (in-domain validation) and larger 
molecules outside the training domain (out-of-domain validation).

Benchmark of model performance
We then benchmark the performance of the MEHnet model and display 
potential applications of the model in systems of practical importance. 
The following discussions focus on close-shell hydrocarbon molecules 
(except for the QM9 version of MEHnet that we will describe later).

The model’s generalization capability from small to large mole-
cules is essential for its usefulness on complex systems for which 
coupled-cluster calculations cannot be implemented on current com-
putational platforms due to their formidable computational costs.  
To test the generalization capability and data efficiency of our model, 
we train the model with a varying training dataset size, Ntrain, which 
ranges from 10 to 7,440 atomic configurations of hydrocarbon mole-
cules. The testing root-mean-square error (RMSE, absolute error in 
atomic units) of different trained properties exhibits a decreasing trend 
when the training dataset size increases (Fig. 2a), indicating effective 
model generalization. Notably, the energy error has the fastest drops 
with a slope of –0.38 (meaning that the testing error ∝ N-0.38

train ). In com-
parison, some of the recently developed advanced machine learning 
potentials (that directly learn energies and their derivatives, such as 
the potentials in refs. 4,8) exhibit lower slopes of about –0.25. This 
implies a potential advantage of the multi-task method: as a multi-task 
method learns different molecular properties through a shared repre-
sentation (the electronic structure), the domain information learned 
from one property can help the model’s generalization on predicting 
other properties30, providing improved data efficiency.

a

Graph encoding

E3-equivariant NN

Atomic configurations

xI,in

fIJ,in

xI,in = Embedding(ZI)
fIJ,in = [fc(rIJ),Ylm(eIJ)]

Orbital integrator

S F

Vθ

xI,out fIJ,out

xI,out fIJ,out

Eigensolver
(F’ + Vθ)ψi = εiψi

{(εi, ψi)}

PopulationElectricalEnergeticsExcitation

E, Hf p, Q

Total loss = loss(qGNN, qCCSD(T))

CI , BIJEg , α

Correcter

Input layer

Output layer

Convolutional layer

Perturbation theory
back propagation

b Convolutional layer

Equivariant
GNN

Self-interaction

MLP
Tensor product

Ylm fc

Ylm fc

Non-linearity

Concatenation

Self-interactionSelf-interaction
+

MLP
Tensor product

Non-linearity

Concatenation

Self-interactionSelf-interaction

Tensor product

+
Non-linearity

MLP
fc

{xI,out} {fIJ,out}

xJ

xJ

xI

xI

xI

c Hydrocarbon CCSD(T) dataset

~10,500 data points

Training
domain

Generalization

Molecule database Molecular
dynamics

G, T

Coupled-cluster
calculation

H
C

q

xJ

{xI,in} {fIJ,in}

1,000

100

10

1 10

10

1

500

100

100

Number of atoms

N
um

be
r o

f e
le

ct
ro

ns

Fig. 1 | Schematic of the MEHnet electronic structure workflow.  
a, Computation graph of the MEHnet method that predicts multiple quantum 
chemical properties from atomic configurations inputs. The computational 
graph consists of an input layer (green blocks), convolutional layer (blue block) 
and output layer (orange blocks). b, Model architecture of the E3-equivariant 
NN with two layers of graph convolution. The output contains both node feature 
xI,out and edge feature fIJ,out. c, Training and testing dataset generation. Each dot 

represents molecules with the same chemical formula, and is plotted to show 
the number of electrons and atoms. The blue and orange colors correspond to 
molecules in the training and generalization domains, respectively. The model 
is trained with small molecules, and is subsequently tested with large molecules. 
The dot size reflects the number of conformers and/or vibrational configurations 
with the same chemical formula in the dataset (from 1 to 500, in log scale).
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We then benchmark the computational costs and prediction accu-
racy of our model trained on 7,440 atomic configurations with 70 differ-
ent molecules, which will be used in the rest of this paper. The MEHnet 
method exhibits smaller computational cost and slower scaling with 
system size, as compared with the hybrid functional, double-hybrid 
functional31 and the CCSD(T) method (Fig. 2b). Compared to the hybrid 
functional, our method avoids the expensive calculation of the exact 
exchange, thus substantially reducing computational cost27. Using 
the gold-standard CCSD(T) calculation as a reference, the prediction 
accuracy of the MEHnet method on various molecular properties 
is compared with that of several popular functionals and existing 
machine learning methods (Fig. 2c and Table 1). The comparison is 
implemented on both the in-domain (ID) and out-of-domain (OOD) 
testing dataset of hydrocarbon molecules. Note that although the 
B3LYP hybrid functional is widely used, it is known to exhibit certain 
failure modes in hydrocarbon molecules32, we therefore include several 
other high-performance hybrid and double-hybrid functionals32,33 with 
DFT-D3 correction34 in the comparison (Supplementary Section 2).

The MEHnet predictions consistently exhibit smaller RMSEs 
than the hybrid (B3LYP and B3PW9135), double-hybrid (DSD-PBEP8631 
and PWPB9536) and DM2112 functionals on most molecular properties 
(Table 1, with the exception of the electric dipole moment on the OOD 

dataset, for which DSD-PBEP86 gives the smallest RMSE). Remarkably, 
the RMSE of the combination energy predicted by MEHnet is about 
0.1 kcal mol–1 (~4 meV) per atom in both the ID and OOD datasets. Our 
method exhibits a similar combination energy RMSE to the AIQM1 
machine learning potential, which features energy predictions within 
chemical accuracy. These results confirm that MEHnet’s predictions on 
reaction energies can approach quantum chemical accuracy (assuming 
that on average 1 mole of molecules in reactants contain ~10 moles of 
atoms). Note that the B3LYP functional (with the def2-SVP basis set) 
exhibits large RMSEs for Mulliken charge mainly because of the basis set 
error37. Although using a large basis set for the B3LYP Mulliken charge 
gives a much smaller error, the MEHnet model still gives better overall 
accuracy (Supplementary Fig. 3).

Aside from the ground-state properties, MEHnet also provides the 
excited-state property Eg and linear response property α with better 
overall accuracy than other methods (Table 1). For intensive quantities 
(E per atom, C, B and Eg), the errors are on a similar level for molecules 
with different sizes; for extensive quantities (p, Q, α), there is a trend 
of increasing error with increasing system size, because the absolute 
values of these quantities themselves increase with system size. Fur-
thermore, the MEHnet model gives similar prediction accuracy among 
different classes of hydrocarbons such as alkanes, alkenes, alkynes and 
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scaling N7 for CCSD(T), because the parallelization efficiency is higher for larger 
molecules. In principle, the N7 scaling for CCSD(T) would appear in the large N 

limit. c, Prediction RMSE of the energy (E per atom, reference to separate atoms), 
electric dipole moment ( p⃗), electric quadrupole moment (Q), Mulliken atomic 
charge (C), Mayer bond order (B), energy gap (first excitation energy, Eg) and 
static electric polarizability (α, a.u. means atomic unit) with respect to the 
coupled-cluster results. The MEHnet method is compared with the B3LYP hybrid 
functional, DSD-PBEP86 double-hybrid functional31, DM21 machine learning 
functional12 and AIQM1 machine learning potential11.
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arenes (Supplementary Fig. 1), suggesting consistent generalizability 
in the hydrocarbon chemical space.

Aromatic molecules
Hydrocarbon molecules have a vast structural space, including various 
types of local atomic environments. To further examine the model’s 
generalization capability in more complex structures, we apply MEHnet 
to a series of aromatic hydrocarbon molecules synthesized in experi-
ments38. The gas phase standard enthalpy of formation Hf is an essential 
thermochemical property of molecules that can be accurately meas-
ured in experiments. In this regard, we use the MEHnet model to predict 
Hf of various aromatic molecules in a comprehensive experimental 
review paper (ref. 38). The MEHnet predictions on Hf are well consistent 
with experiments on all molecules, and their difference is only around 
~0.1–0.2 kcal mol–1 per atom (Fig. 3a). Note that the MEHnet prediction 
error is on the same order of magnitude as the experimental error 
bar (though numerically larger), indicating high prediction accuracy.

In addition to thermochemical properties, MEHnet can also pre-
dict spectral properties (Fig. 3b and Supplementary Fig. 4). Infra-
red spectra, especially, reflect essential information on molecular 
vibrational modes and their interaction with light. In a past work on 
machine learning electronic structure16, the predicted peak intensity is 
usually inconsistent with the experiment. In comparison, the MEHnet 
predictions on both the peak positions and intensity agree well with 
experimental results in several common hydrocarbon molecules, and 
it also provides both the fundamental bands and combination bands 
known as benzene fingers in the infrared spectrum. The good consist-
ency of peak intensity is attributed to accurate predictions on the 

transition dipole moments that determine the intensity of light–matter 
interaction. See Supplementary Section 3 for details on calculating 
the infrared spectrum, as well as the calculated infrared spectra for 
several other molecules.

Large-scale semiconducting polymers
Aside from small molecules, we also apply MEHnet to semiconducting 
polymers comprising hundreds of atoms, which are difficult to calcu-
late by rigorous correlated methods such as CCSD(T). The essential 
electronic properties of semiconducting polymers originate from 
the conjugated π-bonds with delocalized molecular orbitals. As the 
delocalized molecular orbitals extend through the whole molecule 
(Fig. 4a), the polymers’ electronic properties also involve long-range 
correlation, making it challenging for machine learning methods. It is 
therefore important to examine whether MEHnet can capture semi-
conducting polymers’ electronic properties involving delocalized 
molecular orbitals.

Three kinds of semiconducting polymers: trans-polyacetylene 
(t-PA), cyclic polyacetylene (c-PA) and polyphenylene (PPP) are studied 
using MEHnet. The model correctly captures the delocalized π-bond 
feature of frontier orbitals, that is, the highest occupied molecular 
orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) 
(Fig. 4a). Various important electronic properties of semiconducting 
polymers depend on the chain length, including the energy gap Eg and 
polarizability α. We calculate such chain-length dependence (up to 
more than 400 atoms) using the MEHnet model (Fig. 4b,c). One can 
see that Eg is larger for shorter oligomers and converges to a smaller 
value for long chains. This is in analogy to the size effect on the energy 

Table 1 | Benchmark of MEHnet model’s RMSE in predicting different quantum chemical properties on the ID testing dataset 
and OOD testing dataset with respect to the coupled-cluster calculations

RMSE (ID/OOD) Hybrid Double Hybrid ML

Unit B3LYP B3PW91 DSD-PBEP86 PWPB95 DM21 AIQM1 MEHnet (ours)

Energy (per atom) kcal mol–1 2.20/2.41 2.03/2.73 0.94/1.20 1.64/1.98 0.22/0.11 0.13/0.06 0.11/0.10

Dipole Debye 0.06/0.06 0.06/0.04 0.03/0.03 0.07/0.05 0.04/0.04 – 0.03/0.04

Quadrupole ea20 0.12/0.21 0.32/0.51 0.11/0.18 0.10/0.14 – – 0.03/0.12

Atomic charge e 0.19/0.20 0.16/0.16 0.04/0.05 0.05/0.05 0.05/0.04 – 0.04/0.03

Bond order – 0.05/0.03 0.06/0.04 0.04/0.02 0.06/0.03 0.06/0.03 – 0.02/0.02

Bandgap eV 0.59/0.63 0.65/0.54 3.71/3.26 2.19/1.98 1.71/1.47 – 0.26/0.31

Polarizability a.u. 2.22/4.32 2.53/4.72 4.74/8.05 – – – 1.85/3.91

The numbers in the table are ID/OOD RMSE. Other DFT and machine learning methods are compared. We leave some of the spaces blank when the method does not directly output the 
quantity for fair comparison.
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gap of quantum dots and quantum wells. The converged energy gap 
for long t-PA and PPP polymers calculated by MEHnet are in reasonable 
agreement with the experimental values (relative errors within 10%)39,40, 
which are shown as squares in Fig. 4b. The longitudinal static electric 
polarizability αxx (per monomer) is positively related to the polymer 
chain length. This is because in longer chains, more delocalized elec-
tron distributions can have larger displacements under an external 
electric field. The predicted αxx for t-PA oligomers and PPP polymers are 
in perfect agreement with previous correlated calculations using the 
high-accuracy MP2 method41,42 (Fig. 4c). The chain-length-dependent 
Eg and α of c-PA, to the best of our knowledge, have not been reported. 
We provide their values as a prediction to be examined by future work.

QM9 version of MEHnet
Although the results in this paper mainly focus on hydrocarbons, 
our method is readily applicable to systems with different elements.  
To examine the generality of our method to the chemical space beyond 
hydrocarbons, we trained an MEHnet model on 10,000 molecules ran-
domly sampled from the QM9 dataset43—a common quantum chemistry 
database including molecules comprising H, C, N, O and F atoms. The 
model is then tested on 4,000 other molecules randomly sampled from 
the QM9 dataset (see Table 2 and Supplementary Fig. 5). The prediction 
accuracy on the QM9 testing dataset is even better than that in the case 
of hydrocarbons (Table 1), suggesting that our method can be applied 
to more general cases with various types of elements (refer to Supple-
mentary Section 4 for details on the benchmark of the QM9 version).

Discussion
The current MEHnet scheme has several limitations: it is not readily 
applicable to periodic crystals, open shell molecules or molecules 
with strong multi-reference character.

In principle, our approach can also be generalized to extended 
systems, where the periodic boundary condition (PBC) is applied. The 
band structure and Bloch wavefunction can then be obtained by solving 
the eigenvalue problem for each wave vector ⃗k  after a Fourier trans-
formation from the real space to the reciprocal space. Although the 
CCSD(T) method for training data generation does not directly support 
PBC, one can use CCSD(T) calculations for finite atom clusters (that is, 
a truncated and possibly passivated supercell) to train the model and 
subsequently use the model to predict the properties of extended 
systems. Alternatively, the training data of extended systems can be 
generated by high-accuracy methods other than CCSD(T), such as 
double-hybrid DFT, which allows for PBC. Aside from CCSD(T), our 
scheme can also use other high-level quantum chemistry methods to 
generate the training labels of molecule properties. Quantum chem-
istry methods can be selected according to the desired accuracy and 
the character of systems under consideration.

Note that the results of CCSD(T) calculations may not be consist-
ently accurate for all molecules. Some of the polyaromatic hydro-
carbons are more multi-reference in nature (although it is rare for 
the molecules studied in this paper; see Supplementary Section 5), 
so that the CCSD(T) calculations themselves exhibit larger errors 
for these molecules than for other molecules. As all of our training 
and testing data take CCSD(T) as the ground truth, our model cannot 
capture the strong multi-reference effects that are not captured by 
CCSD(T). One possible way to adapt the workflow to systems with 
strong multi-reference nature is by using the multi-reference con-
figuration interaction method44 to generate the training dataset. It 
is also possible to include one-particle reduced density matrix as an 
output descriptor of the MEHnet model to better describe electronic 
structure with strong multi-reference nature, as demonstrated in 
refs. 16. The one-particle reduced density matrix contains complete 
information on ground-state single-body properties for both single- 
and multi-reference systems. Adapting the MEHnet method to more 
comprehensive datasets can produce a general-purpose electronic 
structure predictor, which is left for future work.

Methods
Graph encoding of atomic configuration
The input layer takes atomic configurations as input, including the 
information on atomic numbers (Z1, Z2, … ,Zn) and atomic coordinates 
( ⃗r 1, ⃗r 2,… , ⃗r n) of an n-atom system. A molecular graph is constructed, in 
which atoms are mapped to graph nodes, whereas bonds between 
atoms (neighboring atoms within a cut-off radius rcut = 2 Å) are mapped 
to graph edges. The atomic numbers ZI of input elements are  
encoded as node features xI,in by one-hot embedding. The atomic 
coordinates are encoded as edge features fIJ,in ≡ [ fc(rIJ),Ylm( ⃗e IJ)], where 
fc(r) ≡

1
2
[cos(π r

rcut
) + 1]  is a smooth cut-off function reflecting the  
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Fig. 4 | MEHnet predictions for the electronic properties of semiconducting 
polymers. a, Atomic structure and HOMO and LUMO wavefunctions of t-PA, 
polyphenylene PPP and c-PA. The wavefunctions are visualized by isosurfaces at 
the level of ±0.04 Å−3/2 (positive isosurface colored blue and negative isosurface 
colored yellow). b,c, Energy gap (b) and static electric polarizability (c) of t-PA 
(blue lines), PPP (green lines) and c-PA (orange lines) with different polymer chain 
length. Longitudinal polarizability αxx, horizontal polarizability αyy and vertical 
polarizability αzz are shown as solid, dashed and dotted lines, respectively. 
Squares (blue for t-PA and green for PPP) represent literature values for polymers 
in experiments39,40 and correlated calculations41, whereas blue dots represent 
literature values for t-PA oligomers from the MP2 correlated calculations42.
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bond length rIJ ≡ | ⃗r I − ⃗r J|, and Ylm( ⃗e IJ) is the spherical harmonic functions 

acting on the unit vector ⃗e IJ ≡
r⃗ I−r⃗ J

|r⃗ I−r⃗ J |
 representing the bond orientation26. 

We include Ylm tensors up to l = 2. The electron wavefunction is repre-
sented using an atomic orbital basis set {||ϕI,μ⟩} (ref. 45), where I is the 
index of atom and μ is the index of atomic orbital basis function.

BP86 single-body effective Hamiltonian
A quantum chemistry calculation46 (the orbital integrator block in 
Fig. 1a) is then used to evaluate the single-body effective Hamiltonian 
FIμ,Jν and overlap matrix SIμ,Jν ≡ 〈ϕI,μ∣ϕJ,ν〉 in the non-orthogonal atomic 
orbital representation, where Iμ is the row index and Jν is the column 
index. The S and F matrices are evaluated by the ORCA quantum chem-
istry program package46 (v.5.0.4) with the quick-to-evaluate BP86 
local density functional47 and the medium-sized cc-pVDZ basis set45. 
As the hydrocarbon molecules we study are all close-shell molecules, 
we use spin-restricted DFT calculations to obtain F. We also assume 
the neural network correction term Vθ is spin-independent as well. 
Namely, the spin-up and -down molecular orbitals and energy levels 
are the same, and all molecular orbitals are either doubly occupied 
or vacant.

The total BP86 energy EBP86 equals the molecular orbital energy 
2∑ne/2

i=1 ϵi (where ϵi is the ith molecular orbital energy level and ne is the 
number of electrons) plus a many-body energy EMB:

EBP86 = 2
ne/2
∑
i=1

ϵi + EMB (5)

EMB originates from the double-counting of the electron–electron 
interaction in the band structure energy and can be obtained from the 
output of the ORCA BP86 DFT calculation. The Lowdin-symmetrized 
Kohn–Sham Hamiltonian48 is then obtained as

F′ ≡ S−1/2FS−1/2 + EMB
ne

I, (6)

where the last term is an identity shift to account for the many-body 
energy term. In this case, the direct summation of molecular orbital 
energies given by F′ equals:

2
ne/2
∑
i=1

eigi(F′) = 2
ne/2
∑
i=1

eigi (S−1/2FS−1/2 +
EMB

ne
I)

= 2
ne/2
∑
i=1

[eigi(S−1/2FS
−1/2) + EMB

ne
]

= 2
ne/2
∑
i=1

ϵi + EMB,

(7)

where eigi is a function that returns the ith lowest eigenvalue of a matrix, 
and we use the fact that the energy level ϵi is the eigenvalue of the 
Lowdin-symmetrized Hamiltonian eigi(S−1/2FS−1/2) (ref. 48). After this 
transformation, the Kohn–Sham effective Hamiltonian F′ already 
includes the many-body energy EMB, and the total electronic energy is 
just the summation of molecular orbital energies. Adding the EMB term 
does not change the eigenfunction and relative energy levels, and thus 
all other properties are unchanged.

Architecture of the convolutional layer
In the convolutional layer, the input feature first goes through a  
Nspecies × Nspecies linear transformation (the first self-interaction block, 
Nspecies is the number of different elements in the system) and an 
activation layer (the first non-linearity block). All activation layers 
in MEHnet are tanh functions applied to scalar features. The input 
features then go through the first-step convolution, where the 
fully connected tensor product (the first tensor product block) of 
node feature xJ and the spherical Harmonic components of all con-
nected edge features fIJ are mapped to an irreducible representa-
tion ‘8 × 0e + 8 × 1o + 8 × 2e’ (denoted as Irreps1), meaning there are 
eight even scalars, eight odd vectors and eight even rank-2 tensors. 
Weights in the fully connected tensor product are from a multilayer 
perceptron (the first multilayer perceptron (MLP) block), taking fc(rIJ) 
as input. All MLP blocks in Fig. 1b have a 1 × 16 × 16 × 16 × Nw structure 
and tanh activation function, where Nw is the number of weights in the 
tensor product. Then, in the concatenation block, tensor products 
from different edges fIJ connected to the node I are summed to a new 
node feature on I. The new node features then go through a linear 
transformation (self-interaction block) that maps to Irreps1. In all 
of the self-interaction layers, linear combinations are only applied 
to features with the same tensor order. The new node features are 
added to the original node features, before undergoing the linear 
transformation to complete the first-step of the convolution process.  
The second-step convolution has the same architecture. The only dif-
ference is that the second tensor product block takes input node fea-
tures of Irreps1 and output features of ‘8 × 0e + 8 × 0o + 8 × 1e + 8 × 1o + 
8 × 2e + 8 × 2o’ (denoted as Irreps2). The output of the self-interaction 
blocks is also Irreps2. After another activation function, the node 
features are output as xI,out. Another tensor product is applied to the 
node features of the two endpoints of each edge to attain the output 
bond feature fIJ,out; this output also has a dimension of Irreps2, with 
weight parameters from the MLP taking fc(rIJ) as input.

Finally, the output features are used to construct the correction 
matrix Vθ. The neural network correction matrix is as follows:

Vθ
Iμ, Jν = {

[Vnode(xI,out)]μ,ν if I = J

1
2
[Vedge (fIJ,out)]μ,ν +

1
2
[Vedge (fJI,out)]ν,μ if I ≠ J

(8)

where Vnode(xI,out) is a NI × NI symmetric matrix rearranged from node 
features xI,out, whereas Vedge(fIJ,out) is a NI × NJ matrix obtained from edge 
features fIJ,out. Here NI and NJ are the numbers of basis functions of the 
atom I, J. Note that the output matrices Vθ are Hermitian and equivariant 
under rotation according to the transformation rule of the basis set 
{||ϕI,μ⟩}. Vnode(xI,out) first applies a linear layer from the input dimension 
of Irreps2 to the output dimension Irreps(I)⊗2, where:

Irreps(I ) = {
(2 × 0e + 1 × 1o) if I is H

(3 × 0e + 2 × 1o + 1 × 2e) if I is C
(9)

The output dimension corresponds to the irreducible representation 
of the block diagonal terms of the Hamiltonian of the cc-pVDZ basis 
set. The output is then arranged into the NI × NI matrix form, VI,out, 
according to the Wigner–Eckart theorem22, and symmetrized to obtain 
Vnode(xI,out) =

λV
2
(VI,out + VT

I,out); λV is a constant hyperparameter and is set 
to 0.2 for our model. Similarly, the off-diagonal term Vedge(fIJ,out) in equa-
tion (8) applies a linear layer from the input dimension of Irreps2 to the 
output the dimension Irreps(I, J), which equals the direct product of 
Irreps(I) and Irreps(J). The outputs are then arranged into the NI × NJ 
matrix and multiplied by λV, giving Vedge(fIJ,out).

Furthermore, the energy gap correction term G is obtained from 
a 8 × 32 × 3 MLP that takes the even scalars of xI,out as input and outputs 
a three-component scalar array, gI;0,1,2, with tanh activation. The first 
component is for attention pooling:

Table 2 | RMSE of the QM9 version of MEHnet model on the 
testing dataset of 4,000 randomly sampled configurations 
in the QM9 dataset

Property E per atom p Q C B Eg α

Unit kcal mol–1 Debye a.u. e – eV a.u.

RMSE 0.07 0.03 0.04 0.03 0.04 0.25 1.19

The dash indicates that the bond order B has no unit.
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GK = ∑
I

egI,0
∑JegJ,0

gI,K, K = 1, 2, (10)

giving the two-component bandgap correction term G. The polarizabil-
ity correction term, the screening matrix T is obtained from the edge 
features fIJ,out going through a Irreps2 to 32 × 0e + 1 × 2e linear layer, an 
tanh activation layer, and a 32 × 0e + 1 × 2e to 1 × 0e + 1 × 2e linear layer. 
The 1 × 0e + 1 × 2e array is then multiplied by a factor λT (set to 0.01 in 
our case) and rearranged into the six independent components of the 
symmetric matrix, T.

Evaluating molecular properties
Using Heff, the electronic structure is evaluated by Schordinger 
equation Heffci = ϵic

i, and the molecular orbitals are |ψi⟩ = ∑I,μ ̃ciI,μ ||ϕI,μ⟩, 
̃ci = S−1/2ci. The ground-state properties in equation (1) are evaluated 

from the electronic structure from physics principles, that is, refs. 
28,29:

EMEHnet = ENN + 2
ne/2
∑
i=1

ϵi

⃗pMEHnet = −2e
ne/2
∑
i=1

∑
Iμ, Jν

( ̃ciI,μ)
∗
̃ciJ,ν⟨ϕI,μ| ̂⃗r |ϕJ,ν⟩

QMEHnet = −2e
ne/2
∑
i=1

∑
Iμ, Jν

( ̃ciI,μ)
∗
̃ciJ,ν⟨ϕI,μ| ̂⃗r ̂⃗r |ϕJ,ν⟩

CMEHnet
I = e [ZI − 2

ne/2
∑
i=1

∑
Jμν
( ̃ciI,μ)

∗
̃ciJ,νSIμ, Jν]

BMEHnet
IJ = 4

ne/2
∑
i, j=1

∑
KLμνλσ

( ̃ciK,λ)
∗
̃ciI,μSKλ, Jν( ̃c j

L,σ)
∗
̃c j
J,νSLσ,Iμ

(11)

where ENN is the Coulomb repulsion energy between nuclei, and e and 
̂⃗r  are the electron charge and position operator, respectively.

Besides, using the ground-state electronic structure, Eg can be 
roughly estimated as ϵne/2+1 − ϵne/2, the HOMO–LUMO gap. However, in 
principle, the ground-state electronic structure (ϵn, cn) does not contain 
the information on excited states (once a electron is excited, ϵn and cn 
undergo relaxation and become different). We therefore use MEHnet 
to output two correction terms G1 and G2; Eg is then evaluated as a linear 
transformation of the HOMO–LUMO gap using G1 and G2 as the 
coefficients:

EMEHnet
g = (1 + G1) (ϵne/2+1 − ϵne/2) + G2 (12)

Evaluation of the static electric polarizability is done in two steps. 
First, we evaluate the single-particle polarizability α0 using perturba-
tion theory:

α0 = 2e2
Nbasis

∑
a=ne/2+1

ne/2
∑
i=1

⃗r ai ⃗r ia
ϵa − ϵi

(13)

where Nbasis is the number of basis functions of the molecule, and 
⃗r ai ≡ ∑Iμ, Jν( ̃ca

I,μ)
∗ ̃c i

J,ν⟨ϕI,μ| ̂⃗r |ϕJ,ν⟩. However, the single-particle approxima-
tion used in equation (13) does not consider the electric screening 
effect from electron–electron interaction. We use MEHnet to output 
a screening matrix T and evaluate the corrected polarizability α as 
follow:

αMEHnet = (I + α0T)
−1α0. (14)

We evaluate the gas phase standard enthalpy of formation of 
molecules in Fig. 3 using atomic configurations relaxed by the BP86 
functional with cc-pVDZ basis set. The total energy at the relaxed 
atomic configuration is then calculated by the MEHnet. The zero-point 

energy (ZPE) and thermal vibration, rotation, and translation energy at  
T = 298.15 K are also calculated by the BP86 functional with cc-pVDZ 
basis set implemented in ORCA. The ZPE is corrected by the optimal 
scaling factor of 1.0393 according to Ref. 49. Summing all energy terms 
give the inner energy U, and the enthalpy is evaluated as H ≃ U + kBT (kB 
is the Boltzmann constant), where we use the ideal gas law. To obtain 
the standard enthalpy of formation, we subtract the reference state 
enthalpy of graphite and hydrogen gas at standard condition. The refer-
ence enthalpy for each carbon and hydrogen atom are determined as 
–38.04634 a.u. and –0.57545 a.u., respectively, using CCSD(T) calcula-
tion with cc-pVTZ basis set combined with measured standard enthalpy 
of formation of atomic carbon, atomic hydrogen, and benzene. Atomic 
configurations of semiconducting polymers in Fig. 4 are relaxed using 
the PreFerred Potential v.5.0.0 (ref. 6,7).

Perturbation theory-based back-propagation
In MEHnet training, gradient of the loss function to the model param-
eters needs to be calculated. Gradient back-propagation schemes are 
well-developed for all computation steps, with the exception of solv-
ing the Schrodinger equation. The gradients are numerically unstable 
when there are near-degenerate energy levels, which is usually the case 
in molecules. Here we first use quantum perturbation theory to obtain 
the first-order change of energy levels and molecular orbitals:

δϵi = (ci)†δHeffci

δci = ∑
p≠i

(cp)†δHeffci

ϵi−ϵp
cp

(15)

We then have the gradients to model parameters as equation (4). Using 
these equations, we derive the gradients of each molecule properties 
in equation (11), as follows:

∇θ fE = 2
ne/2
∑
i=1

∇Vii

∇θ fp⃗ = −4e
ne/2
∑
i=1

Nbasis
∑

a=ne/2+1
Re ∇Vai

ϵi−ϵa
⟨ψi| ̂⃗r |ψa⟩

∇θ fQ = −4e
ne/2
∑
i=1

Nbasis
∑

a=ne/2+1
Re ∇Vai

ϵi−ϵa
⟨ψi| ̂⃗r ̂⃗r |ψa⟩

∇θ fCI = −4e
ne/2
∑
i=1

Nbasis
∑

a=ne/2+1
Re ∇Vai( ̃ci)

†
(IIS) ̃ca

ϵi−ϵa

∇θ fBIJ = 4
ne/2
∑
i=1

Nbasis
∑

a=ne/2+1
Re ∇Vai

ϵi−ϵa

× ( ̃ci)
†
(SIJPSII + SIIPSIJ) ̃ca

(16)

where ∇Vai ≡ (ca)†(∇θVθ)ci , the Nbasis × Nbasis matrix IJ is identity in the 
block diagonal part of atom J and zero elsewhere. Meanwhile, we define 
P ≡ 2∑ne/2

i=1 ̃ci( ̃ci)
†
. The essential method to avoid numerical instability 

is to remove terms that can be proved to cancel each other out. Taking 
∇θ fp⃗ as an example: in equation (4), the summation over p goes through 
all states except i. But as the summed formula in equation (16) is 
antisymmetric to i and a, the terms for which a ranges from 1 to ne/2 
cancel each other out. Only terms for which a ranges from ne/2 + 1 to 
Nbasis have a non-zero contribution to the final gradient. Therefore, i is 
always occupied, and a is always unoccupied in the summation. As 
close-shell molecules have a finite bandgap, ϵi and ϵa are not close to 
each other in any term of the summation, so evaluating equation (16) 
is numerically stable.

Similarly, the gradients of Eg and α are as follow:

∇θ fEg = (1 + G1) [∇Vne/2+1,ne/2+1 − ∇Vne/2,ne/2]

+ (ϵne/2+1 − ϵne/2)∇θG1 + ∇θG2
(17)
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To calculate the gradient of α, we first evaluate the gradient of α0, and 
then derive ∇θ fα using the chain rule:

∇θα0 = 2e2
Nbasis
∑

a=ne/2+1

ne/2
∑
i=1

Re {r⃗ ai r⃗ ia(∇Vii−∇Vaa)
(ϵa−ϵi)

2

− 2 ∑
p≠a,i

r⃗ ai

(ϵa−ϵi)
[ r⃗ ip∇Vpa

(ϵp−ϵa)
+ r⃗ pa∇Vai

(ϵp−ϵi)
]}

∇θ fα = (I + α0T)
−1(∇θα0)(I − Tα)

− α0(∇θT)(I + α0T)
−1α

(18)

The above equations give gradients of all terms in the loss function 
expressed by gradients to the direct outputs of the MEHnet, ∇θVθ, 
∇θG and ∇θT.

Dataset generation
First, 85 small hydrocarbon molecule structures are collected from 
the PubChem database50. The training domain (out-of-domain testing 
dataset) includes 20 (3) different chemical formula correspond to the 
horizontal axis labels of the first 20 (last 3) columns in Fig. 2c. Each 
chemical formula includes up to five different molecules (conformers) 
taken from the PubChem database. The total number of molecules 
(conformers) in the training domain and out-of-domain testing dataset 
is 70 and 15, respectively. The full list of molecules and the number of 
atomic configurations for each molecule are listed in Supplementary 
Table 1. Refer to Supplementary Section 1 for a discussion on the prin-
ciples of selecting these molecules, and their diversity.

Molecular dynamics simulation with TeaNet interatomic 
potential6,7 is then performed for each molecule structure to sam-
ple an ensemble of atomic configurations. The molecular dynamics 
simulation uses PreFerred Potential v.4.0.0 (ref. 10) at a temperature 
of 2,000 K, which enables large bond distortion but does not break the 
bonds. The initial velocity is set as a Maxwell Boltzmann distribution 
with the same temperature. Langevin NVT dynamics is used with the 
friction factor of 0.001 fs−1 and timestep of 2 fs. The TeaNet potential 
run for 100,000 steps for each chemical formula, and one atomic 
configuration is sampled every 200 timesteps in the molecular dynam-
ics trajectory; 500 configurations (including the initial equilibrium 
configuration) are sampled for each chemical formula in the training 
domain; three-quarters of the 10,000 configurations are sampled to 
form the training dataset, and the remaining one-quarter forms the 
in-domain testing dataset. The out-of-domain testing dataset contains 
500 configurations. Note that as we aim to include structures out of 
equilibrium positions, geometric relaxation is not needed before 
CCSD(T) calculation (otherwise all structures will relax back to the 
equilibrium positions).

A CCSD(T) calculation with the cc-pVTZ basis set is then imple-
mented in ORCA46 for each selected configuration, giving the training 
labels of total energy, electric dipole and quadrupole moment, Mul-
liken atomic charge, and Mayer bond order. An EOM-CCSD calculation51 
with the cc-pVDZ basis set is then implemented to obtain the first 
excitation energy (energy gap). Finally, we conduct a polarizability 
calculation with the CCSD and cc-pVDZ basis set. The overlap matrix 
S and starting-point effective Hamiltonian F is obtained from a BP86 
DFT calculations with the cc-pVDZ basis set.

Model training
The weight parameters in the loss function is listed as follow: wV = 0.1, 
wE = 1, wp⃗ = 0.2, wQ = 0.01, wC = 0.01, wB = 0.02, wEg = 0.2, wα = 3 × 10−5. 
All quantities are in atomic unit. The model training is implemented 
by full gradient descend (FGD) with Adam optimizer. For the finally 
deployed model (7,440 training data points), it is first trained on 1,240 
data points sampled from the whole training dataset for 5,000 FGD 
steps with initial learning rate of 0.01. The learning rate is decayed by 

a constant factor γ1 = 10−1/10 per 500 steps. The model is then trained on 
the whole dataset with 7,440 data points for 6,000 FGD steps with a 
learning rate of 0.001. For other models trained on smaller dataset in 
Fig. 2a in the main text, the model is trained for 3,000 FGD steps with 
initial learning rate of 0.01 decayed by γ2 = 10−1/6 per 500 steps. As the 
model trained on 640 data points do not converge in the 3,000-step 
training, we implement a 10,000-step training, with an initial learning 
rate of 0.01 that decays by γ1 every 500 steps in the first 5,000 steps 
and keeps constant at the last 5,000 steps.

Data availability
Raw computational data files and the training and testing datasets 
are available with this manuscript through FigShare at https://doi.
org/10.6084/m9.figshare.25762212 (ref. 52). Source Data are provided 
with this paper.

Code availability
The source code to generate the training dataset, train the MEHnet 
model, and apply the trained MEHnet model to hydrocarbon mol-
ecules has been deposited into a publicly available GitHub repository 
at https://github.com/htang113/Multi-task-electronic (ref. 53), and 
is also available in the Supplementary Software. The repository con-
tains two branches: the branch v.1.6 is for all results of hydrocarbon 
molecules in this paper, and the branch v.2.0 is for the benchmark on 
the QM9 dataset.
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