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Sampling electronic Fock states using
determinant quantumMonte Carlo
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Analog quantum simulation based on ultracold atoms in optical lattices has catalyzed significant
breakthroughs in the study of quantum many-body systems. These simulations rely on the statistical
sampling of electronic Fock states, which are not easily accessible in classical algorithms. In thiswork,
we modify the determinant quantum Monte Carlo by integrating a Fock-state update mechanism
alongside the auxiliary field. This method enables efficient sampling of Fock-state configurations. The
Fock-state restrictive sampling scheme further enables the pre-selection of multiple ensembles at no
additional computational cost, thereby broadening the scope of simulation to more general systems
and models. Employing this method, we analyze static correlations of the Hubbard model up to the
fourth order and achieve quantitative agreement with cold-atom experiments. The simulations of
dynamical spectroscopies of the Hubbard and Kondo-lattice models further demonstrate the
reliability and advantage of this method.

A fundamental inquiry in modern condensedmatter and quantum science
is understanding the collective behavior of quantum many-body systems.
Yet, accurately solving these complex systems with unbiased classical
numericalmethods continues to pose significant challenges.Whenmultiple
electrons or other degrees of freedom are entangled, the Hilbert space
required to fully represent the relevant states of the system scales expo-
nentially with the number of particles. This fast increase in theHilbert space
has significantly limited the application of wavefunction-based techniques,
including exact diagonalization (ED) and density matrix renormalization
group theory (DMRG)1,2, in solving many-body systems. Although quan-
tumMonteCarlomethodsdonot suffer fromthis limitation3–7, the fermion-
sign problem and finite temperature hinder us from accessing the ground
eigenstate of a many-body quantum system.

Quantum computing techniques provide a promising solution for
quantum many-body systems8. In addition to gate-based universal quan-
tum computers, manifest as the noisy intermediate-scale quantum (NISQ)
machines in the near future9,10, have emerged as an alternative formodeling
correlated electrons in quantum materials11–13. Among analog simulators,
ultracold neutral atoms confined within optical lattices provide a versatile
platform for simulating electronic wavefunctions within solid-state
crystals14–17. By utilizing two hyperfine states and exploiting the Feshbach
resonance, precise control of the on-site Hubbard-like interaction U is
achievable18–20. Quantum gas microscopes, with their ability to sample
many-body states at the single-site spatial resolution, facilitate statistical
measurements for evaluating instantaneous spin and charge
distributions21–32 as well as multi-point correlations encoding entanglement

and topological orders33–40. With these progresses, quantum simulation
techniques have enabled the simulation of strongly correlated electrons in
system sizes inaccessible with exact numerical solutions, thus offering a
preliminary insight into entanglement properties in models relevant to
quantum materials.

Accessing higher-order correlations, which are crucial for wavefunc-
tions with greater entanglement depth, necessitates increased sampling of
Fock states in analog quantum simulators to reduce statistical errors. Fur-
thermore, larger system sizes demand additional samples. Hence, the
application of analog quantum simulators to highly entangled and suffi-
ciently large problems is hindered by sampling inefficiency. To address this
issue,machine learning-basedmethods have beenproposed to expedite this
process through advanced data analysis41,42. However, training an efficient
machine learning model necessitates a substantial volume of data before-
hand. Existing experimental measurements remain costly and do not yield
adequate data for training an efficient machine-learning model. Taking the
Hubbard model as an example, a typical analog simulation based on
quantum gas microscopy collects 105 snapshots, inadequate to train
sophisticated deep-learning models.

The preparation of Fock-state samples has been successfully achieved
using DMRG for zero-temperature systems43 and through minimally
entangled typical thermal states for finite temperatures44. However, their
applicability is primarily limited toquasi-one-dimensional systemsand low-
temperature regimes. In contrast, determinant quantum Monte Carlo
(DQMC) is optimized for high-temperature ensembles and has been
effective in simulations of 10 × 10 fermionic systems at intermediate and
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high temperatures. This compatibility with respect to temperature and
system size makes DQMC an excellent candidate for generating Fock-state
samples consistent with those obtained in analog quantum simulators.
Nevertheless, conventional DQMC relies on stochastic sampling of
Hubbard-Stratonovich fields rather than directly yielding Fock states of
electrons, leading to inefficiencies in obtaining Fock-state samples.

To address these challenges, a configuration sampling method based
on a conditional probability chain was recently proposed, iteratively con-
structing Fock states from specific auxiliary field configurations45. Retaining
the DQMC framework, this method inherits certain limitations of DQMC,
such as relatively constrained models and ensembles. Here, we propose an
alternative approachby embedding the Fock-state sampling process directly
into the DQMC framework, establishing a unified Markov chain that
alternates updates between the auxiliary fields and Fock-state configura-
tions. This algorithm termed the Fock-State determinant quantum Monte
Carlo (FDQMC), enables direct pre-selection of sampled Fock states,
offering unprecedented flexibility across various ensembles and systems.
With computational costs comparable to traditional DQMC, FDQMC
provides statistical Fock-state samples efficiently, facilitating multi-point
observables akin to those measured in quantum gas microscopy. This
capability positions FDQMC as a powerful and precise emulator for cold-
atom experiments. To demonstrate the capability of FDQMC, we investi-
gate staggered magnetization, two-point, and higher-order correlations
across various ensembles, successfully reproducing key features observed in
quantum gas microscope experiments under comparable simulation con-
ditions. Additionally, we extend this method to simulate the dynamical
spectroscopies using examples ofHubbard andKondo-latticemodels. In the
context of Kondo-lattice models, FDQMC directly simulates the spin-
fermion interaction, leveraging its capacity for pre-selecting a fixed number
of slave fermions, thus broadening its applicability to constrained quantum
systems.

Results
The Fock-state DQMC algorithm
For the Hubbard model, the determinant quantum Monte Carlo employs
the Hubbard–Stratonovich decomposition to map the expectation of
observables in an interacting system into a statistic average ofmeasurements
in an effective non-interacting system that couples to an auxiliary field3–7.
This decomposition is expressed as

Z ¼ Tr½ρ� ¼
X
x

Tr½ρx�; ð1Þ

where Z is the partition function, x is the Hubbard–Stratonovich field, and

ρx ¼ T e
�
R β

0

P
ij
cyi Hij ½xðτÞ�cjdτ is the density matrix for the effective non-

interacting system, associated with an imaginary-time-dependent auxiliary
field x(τ). Here, H[x(τ)] represents the Hamiltonian for the effective non-
interacting system.

Unlike the traditional DQMC, we can further project ρx to the Fock-
state basis ∣ηi before evaluating the expectation values of observables. That
is,

Z ¼
X
x;∣ηi

Zx;∣ηi ¼
X
x;∣ηi

η
�
∣ρx∣η

�
; ð2Þ

where ∣ηi is a binary vector that specifies a fermionic Fock state in the real-
space representation. For example, ∣1010i represents the state cy1cy3∣0i. This
projectionmimics the snapshot sampling in the quantumgasmicroscope of
quantum simulations15. With these projections, the expectation value of an
observable O is calculated by

Oh i ¼ Z�1
X
x;∣ηi

Zx;∣ηi Oh ix;∣ηi; ð3Þ

where Oh ix;∣ηi ¼ η
�
∣Oρx∣η

�
= η
�
∣ρx∣η

�
. Here, Zx;∣ηi is not positive semi-

definite since the projection onto a random Fock state breaks the
particle–hole symmetry46. Therefore sign re-weighting is needed by
adjusting Eq. (3) into

Oh i ¼
P

x;∣ηi∣Zx;∣ηi∣sgn Zx;∣ηi
� �

Oh ix;∣ηiP
x;∣ηi∣Zx;∣ηi∣sgn Zx;∣ηi

� � : ð4Þ

FDQMC utilizes ∣Zx;∣ηi∣ as the joint statistical weight for x and η to
generate a significant number of (x, η) pairs. The statistical average over
these pairs allows an unbiased evaluation of the expectation value Oh i.
We adopt the Metropolis-Hasting update for Markov-chain importance
sampling. Specifically, for a proposed flip ðx; ηÞ ! ðx0; η0Þ, the
acceptance probability is calculated as Pacc ¼ minf∣Racc∣; 1g, where
Racc ¼ Zx0;∣η0i=Zx;∣ηi. As shown in Fig. 1, FDQMC updates introduce an
additional dimension compared to traditional DQMC. It achieves impor-
tance sampling of Fock stateswith a signed uniformweight. Ideally, for large
sample sizes, the physical distribution of Fock-state snapshots in the original
system can be reproduced by partially canceling positive-weight samples
with those carrying negative weights,

η
�
∣ρ∣η
� ¼X

x

∣Zx;∣ηi∣sgn Zx;∣ηi
� �

: ð5Þ

Inpractice, insufficient sample sizemay result in anon-positive distribution.
However, if the sign problem is not severe, these samples can accurately
reproduce all high-order correlations in an unbiased manner through Eq.
(4). A systematic investigation of the sign problem is presented in
SupplementaryNote 2. The update andmeasurement strategies are detailed
in “Methods”.

Unlike traditional DQMC, direct pre-selection for any ensembles and
physical constraints is easily achieved in FDQMC, through the Fock-state
restrictive sampling (FRS). This capability is essential for accurately evalu-
ating observables, particularly doping-sensitive observables, in finite sys-
tems where the grand-canonical and canonical ensembles differ
significantly, and particle number fluctuations can introduce substantial
noise. FRS scheme is analogous to the post-selection method used in ana-
lyzing quantum gas microscope experiments33–40, but is performed before
the Monte Carlo update without generating unused samples. The grand-
canonical ensemble is simulated by default if no restrictions are applied. In
this work, we examine three different ensembles. The canonical ensemble
with afixed particle number can be simulated by randomly swapping a site-i
particle and a site-j hole for each η-update (see Fig. 2a). Building upon this,
the spin-selected ensemble furthermandates a consistent total spin (in the z-

Fock state η auxiliary field x

η-update

x-update
Fock-state snapshots

observables  O<      >
Fig. 1 | Schematic illustrating the FDQMC update strategy. The blue and red
arrows represent spin-12 fermions, while the orange “+” and green “−” symbols
depict typical Ising-type auxiliary fields. Random walker of the (x, η) pair is alter-
nately updated in η- and x-directions during the Markov-chain sampling. The
sampled Fock states align with the distribution of projectively measured snapshots
within the system, achieved through sign reweighting. General observables are
measured by statistically averaging these samples.

https://doi.org/10.1038/s42005-025-01963-z Article

Communications Physics | (2025)8:48 2

www.nature.com/commsphys


direction) and is realized by restricting particle-hole swaps within each spin
sector (see Fig. 2b). Finally, the non-doublon ensemble excludes double
occupation on the top of the spin-selected ensemble, often used in quantum
simulations. In the context of theHubbardmodel, this ensemble serves as an
extension of the t–J model, including all higher-order spin-exchange pro-
cesses. The non-doublon ensemble is achieved by swapping up-spins,
down-spins, and holes individually (see Fig. 2c). As will be elaborated later,
the non-doublon ensemble is more effective in signaling high-order cor-
relations. Additionally, constraints on fixing on-site fermion numbers
enable FDQMC to simulate spin–fermion interactions, such as Kondo
coupling, through slave fermions (see Fig. 2d).

Magnetization in a Hubbard model
We apply FDQMC to the single-band Fermi–Hubbard model in a 2D
square lattice, whose Hamiltonian is

HH ¼ �t
X
ijh i;s

ðcyiscjs þ h:c:Þ þ U
X
i

ni"ni#: ð6Þ

Here, t denotes the hopping between nearest neighbors, and U > 0 repre-
sents the on-site repulsive interaction. In this section,we examine static two-
point and higher-order correlations across various ensembles.

Leveraging the capability to select specific ensembles, the simulated
results of FDQMC can be benchmarked against the quantum gas micro-
scope experiments in ref. 47. Figure 3a shows the distributions of staggered
magnetization at half-filling, defined as

MðstÞ
z ¼ 2

N

X
i

ð�1Þixþiy Szi : ð7Þ

The simulated distributions are statistically derived from ~4 × 106 Fock-
state samples by FDQMC,while the experimental results are obtained using
~250 snapshots via quantum gas microscope47. Here, Szi ¼ ðni" � ni#Þ=2
represents the z-component of the spin at site i,N denotes the total number
of sites, and the Hubbard interaction is set to U = 7.2t in align with
experiments. We select an 8 × 10 periodic square lattice and employ the
canonical ensemble to compare with the experimental results measured
within a circular central region containing approximately 80 sites. At high
temperatures, the simulated MðstÞ

z closely aligns with the distribution
obtained fromexperiments, appearing as aGaussian envelope center at zero
with spin symmetry. As the temperature falls below the spin-exchange
energy J ~0.55t, the distribution noticeably broadens due to quantum

fluctuations driven by antiferromagnetic (AFM) correlations48. These
fluctuations are reflected numerically by more distinct Fock-state config-
urations within the same sample volume. Therefore, the experimental
distribution starts to deviate from a smooth and symmetric distribution,
constrained by its 250 snapshots. In contrast, the distribution obtained by
FDQMC can reach exact solutions withminimal statistical error, benefiting
from the extensive sample volume (~4 × 106). For a detailed comparisons,
please refer to Supplementary Note 1.

When a single hole is introduced into the AFM background, it can
influence magnetization49–52. Here, we examine a single-hole-doped Hub-
bard model with U = 8t on a 6 × 6 periodic square lattice. Given the odd
number of electrons with the presence of a single hole, we opt for the spin-
selected and non-doublon ensembles and set the total spin to be 1/2. With
this selected orientation, the magnon dressing of the spin polaron can be
visualized through the (connected) spin–hole correlation36,53

CðconÞ
h;s ðdÞ ¼ 2 nh0S

z
d

� �
= nh0
� �� 2

X
r

Szr
� �

=N; ð8Þ

wherenh0 ¼ ð1� n0"Þð1� n0#Þ is the hole operator at the origin. As shown
inFig. 3b, thehigh-temperature system is disordered,withnomagnetization
except that the additional spin moment accumulates near the nearest
neighbor of the hole. With the decrease in temperature, the AFM order
starts to develop, and themotion of the hole is dressed by the disturbance of
theAFMcorrelations, resulting in the checkerboarddistributionofCðconÞ

h;s ðdÞ
throughout the system.

Themagnetization is further influenced by themobility of the hole.We
delve into this effect by adding a pinning potentialV at the origin site to tune
the mobility of the dopant. This leads to the modified Hamiltonian

HV ¼ HH þ Vðn0" þ n0#Þ: ð9Þ

The pining potential can be realized experimentally using an optical tweezer
in an optical lattice36,54,55. While similar to the V = 0 results at high tem-
peratures, the staggered magnetization starts to develop at a higher tem-
perature with a strong pinning potential. In the lowest temperature

a canonical

b spin-selected

c non-doublon

d slave fermion

Fig. 2 | Ensemble selection via Fock-state restrictive updates. a The canonical
ensemble by swapping particles and holes. b The spin-selected ensemble by swap-
ping particles and holes within each spin sector. c The non-doublon ensemble by
swapping among singly-occupied electrons and holes. d Slave fermions by flipping
the on-site spins.
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Fig. 3 | Magnetization in undoped and single-hole-doped Hubbard models.
aDistributions of the staggeredmagnetizationMðstÞ

z in the undopedHubbardmodel,
calculated using Fock-state samples generated by FDQMC at different temperatures
T. The standard error is smaller than the data points. The bars represent results
obtained from cold-atom experiments in Ref. 47. b The spatial distribution of
CðconÞ
h;s ðdÞ calculated within the non-doublon ensemble at different temperatures T,

where the upper (lower) panel corresponds to pinning potential V = 0 (V = 5t).
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(T = 0.2t), the magnetization resembles a Néel state with a missing down-
spin at the origin. Given the reduced hole’smobility with a pronouncedV, it
serves as a geometric defect at low temperatures.

High-order correlations
Asignificant advance of quantumsimulations is the analysis ofmulti-point
high-order correlations, which extends beyond the capabilities of con-
ventional spectroscopic measurements in solid-state materials. In the
context of the Hubbard model, connected high-order correlations have
been utilized to uncover hidden orders, polaronic wavefunctions, and
entanglement33–40,45.

Following the formalism in ref. 56,we examine the property of a single-
hole-doped Hubbard model using FDQMC on a 6 × 6 square lattice
through the analysis of the third- and fifth-order correlations. The con-
nected part of the third-order correlation is defined as36,56

BðconÞðr; r0; r00Þ ¼ 4 nhr S
z
r0S

z
r00

� �
= nhr
� �� 4 Szr0S

z
r00

� �
; ð10Þ

highlighting the impact of a hole (at site r) on the spin–spin correlation
Szr0S

z
r00

� �
(see the inset of Fig. 4a). The temperature dependence of

BðconÞðr; r0; r00Þ, the diagonal spin correlations ðr0; r0Þ ¼ ðx̂; ŷÞ with respect
to the hole at r = 0, is shown in Fig. 4a. Its disconnected part, i.e., 4 Szr0S

z
r00

� �
, is

positive in the AFM background, and BðconÞðr; r0; r00Þ indicates the
enhancement or diminishment of this correlation near a hole. Without the
pinning potential, B(con) consistently exhibits a negative value, reflecting the
disturbance of the AFM spin correlations by the hole’s motion. This con-
nected correlation serves as a fingerprint for a spin polaron. Nonetheless,
with the introduction of a strong pinning potential V = 5t, the sign of B(con)

transitions to positive at sufficiently low temperature (T < 0.25t). Such a flip

signals an “anti-screening” effect of the hole at lowT, strengthening the spin
correlations near the hole. This effect is attributed to the reduction of spin
fluctuations with fewer neighboring sites when the hole is immobile and
becomes effectively a geometric defect56. Such a transition from polaronic
screening to anti-screening only occurs when V is adequately large to
surpass the kinetic energy of the hole (see Fig. 4b). It is important to note
that, although the results from different ensembles vary quantitatively, the
critical temperature and pinning potential for the transition remain
unaffected by the choice of ensemble.

Another high-order correlation depicting the single-hole dynamics is
the fifth-order hole–spin-ring correlation, defined as56,57

C♢ ¼ 24hnh0Szrþx̂S
z
rþŷS

z
r�x̂S

z
r�ŷi= nh0

� �
; ð11Þ

where the hole at the origin is encircled by a spin ring. Similar to the third-
order correlation, C♢ remains negative for a mobile hole across all
temperatures (see Fig. 4c), reflecting the string excitation caused by the
formation of spin polaron57. This negativity stems from spin correlations of
the AFM background, hence intensifying at lower temperatures. With a
pinning potential in place, this fifth-order correlation aligns with the V = 0
scenario at high temperatures due to the lack of AFM order. Yet, as the
temperature drops significantly below J, the emergence of AFM correlation
and the suppression of quantum fluctuations by the geometric defect help
the development of a pronounced spin-ring correlation surrounding the
immobile hole. This effect is evidenced by the substantial positive values of
C♢ at low temperatures (T < 0.3t). The transition from negative to positive
also occurs around Vc ~2t (see Fig. 4d), indicating that the coincident
underlying anti-screening physics is observed in the third-order correla-
tion B(con).

Expanding our analysis to higher dopings, the fermion-sign problem
becomesmore pronounced at low temperatures, restricting our simulations
to relatively high temperatures. Here, we choose U = 8t and T = 0.5t on the
periodic 8 × 8 lattice, matching the conditions of cold-atom experiments in
Ref. 40, whereU = 7.4(8)t andT = 0.52(5)t. An even number of doped holes
is used for the FDQMC simulation to ensure that the total spin of the spin-
selected and non-doublon ensembles is zero. This setting reflects the
experimental reality and simplifies the simulation, as all low-order corre-
lations involving an odd number of spin operators are nullified.

Extending the simulation of the connected third-order correlation
BðconÞðr; r þ r0; r þ r00Þ into finite doping, we focus on two key distances
indicative of spin polaron wavefunction: the nearest-neighbor-spin
BðconÞðNN- spinÞ ¼ BðconÞðr; r þ ŷ; r þ x̂ þ ŷÞ and the nearest-diagonal-
spin BðconÞðND- spinÞ ¼ BðconÞðr; r þ x̂; r þ ŷÞ (illustrated in the insets of
Figs. 5a and b). Without the pinning potential, the system is translational
symmetric, and the choice of r is irrelevant. As shown in Fig. 5a,B(con)(NN-
spin) obtained from all ensembles exhibits a rapid decrease from a sig-
nificantly positive value, transitioning to negative at ~18% doping—a
change potentially linked to the temperature-independent quasi-particle
interruption observed inARPES studies of cuprates58. This signflip reflects
the breakdown of spin polaron with increasing doping. When comparing
results from the canonical ensemblewith cold atomexperiments inRef. 40,
a consistent agreement is observed throughout all dopings. This con-
sistency further validates the efficacy of FDQMC samples in mirroring
quantum simulation snapshots. A similar agreement is observed for
B(con)(ND-spin), as presented in Fig. 5b. Results from the non-doublon
ensemble, however, deviate from the canonical ensemble and experimental
results in the low doping regime, attributed to the exclusion of doublon-
hole fluctuations.

The non-monotonic doping dependence of B(con)(NN-spin) indicates
that the dopedHubbardmodelmaintains a strongly correlated state beyond
the breakdown of the spin polaron, which has also been suggested by the
persistent spin fluctuations observed in cuprates59–61. Particularly, potential
interactions between holes may be mediated by the overlap of two spin-
polarons62. Therefore, we examine the fourth-order correlations involving
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-

Fig. 4 | High-order correlations of the Hubbard model with a single hole.
a Temperature dependence of third-order correlations BðconÞð0; x̂; ŷÞ for V = 0
(green) and V = 5t (orange), simulated in the canonical (triangle), spin-selected
(open square), and non-doublon (solid square) ensembles. The inset shows the same
data with the scaled axis. b The dependence on the pinning potential V at T = 0.2t.
c, d Same as a, b but for the fifth-order C♢. The cartoon in each panel illustrates the
geometry of each correlation. Error bars represent the standard error of the Monte
Carlo data.
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two holes40

DðconÞðr1; r2; r3; r4Þ
¼ 1

nhr1n
h
r2

D E nhr1n
h
r2
Szr3S

z
r4

D E
� nhr1

D E
nhr2S

z
r3
Szr4

D E
� nhr2

D Eh

� nhr1S
z
r3
Szr4

D E
� nhr1n

h
r2

D E
Szr3S

z
r4

D E
þ 2 nhr1

D E
nhr2

D E
Szr3S

z
r4

D Ei
;

ð12Þ

This connected correlation quantifies the net effect of a pair of holes on
adjacent spin correlations, compared to separatedones.When the examined
two spins and two holes form a plaquette, i.e., NN-spin and ND-spin as
shown in Fig. 5c, d,D(con) manifests significant values across a wide range of
doping (up to ~60%). In particular,D(con)(NN-spin) is consistently negative,
reflecting a tendency for spin polarons to share spin defects. This correlation
monotonically decreases as the system is doped away from the AFM phase.
At the same time,D(con)(ND-spin) becomes significantly negative only near
20% doping, where the spin polarons break down. Both the NN- and the
ND-D(con) suggest the preference of spin-singlet around the closest
proximity of the hole pair, consistent with experimental findings40.

When compared against various theories, it has been found that ana-
lytical wavefunctions ansatzes fail to capture the doping evolution observed
in experiments40. Numerical simulations using finite-temperature ED have
successfully reproduced third-order correlations B(con) and qualitatively
traced the trend of the fourth-order correlations D(con). However, dis-
crepancies of a factor of 2–2.5 are present in the ED simulations, largely due
to the finite-size effects. Using the FDQMC method at the same size and
temperature as the experiments, wemanaged to closelymatch experimental
results for D(con)(NN-spin) and significantly reduce the discrepancy of

D(con)(ND-spin) to around 50%. Since the DQMC simulations are unbiased
at this temperature and system size, the remaining mismatch likely stems
from the inhomogeneity and the uncertainty of model parameters in
experiments or the distinction in boundary conditions. Upon comparing
across different ensembles, we find that high-order correlations evaluated in
the canonical and the spin-selected ensemble are similar, whereas the non-
doublon ensemble leads to more pronounced correlations below 40%
doping. This indicates that the non-doublon ensemble is more suitable for
elucidating genuine hole–spin correlations and uncovering their entangle-
ment, due to the exclusion of irrelevant Fock states that involve double
occupation.

Dynamical correlations and spectroscopies
While simulating dynamical correlations presents challenges with analog
quantum simulators63, the Fock state sampling can be extended to the
analysis of unequal-time correlations and allows for the emulation of
spectroscopies similar to traditional DQMC. For a specific configuration of
(x, η), the unequal-time Green’s function is calculated as (assuming τ1 ≥ τ2)

ciðτ1Þcyj ðτ2Þ
D E

x;∣ηi ¼ Bxðτ1; τ2ÞGx;∣ηiðτ2; τ2Þ
h i

ij
;

cyj ðτ1Þciðτ2Þ
D E

x;∣ηi ¼ I � Gx;∣ηiðτ2; τ2Þ
� �

B�1
x ðτ1; τ2Þ

h i
ij

ð13Þ

using the numerically stablemethod introduced inRef. 64.Other dynamical
observables are derived fromGreen’s functions usingWick’s theorem.Here,
we discuss two representative examples: The single-particle spectrum
A(k,ω)measures the evolution of an individual electron, and the dynamical
spin structure factor S(q, ω) measures the propagation of a spin excitation
(see definitions in “Methods”). Both A(k, ω) and S(q, ω) are analytically
continued using the maximum entropy method65. For the sake of
visualization, we normalize S(q, ω) for each momentum, denoted as
~Sðq;ωÞ, while the original data are shown in Supplementary Note 3.

Building on above analyses, we first study the half-filled Hubbard,
utilizing an 8 × 8 clusterwithin the canonical ensemble. As shown in Fig. 6a,
aMott gapof ~4t is evident inA(k,ω). TheHubbard interactionalso leads to
the formation of 2DAFMorder, asmanifested by themagnon dispersion in
~Sðq;ωÞ (see Fig. 6b). Different from small-cluster ED simulations, the
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~Sðq;ωÞ evaluated fromFDQMCcorrectly portrays the splitting between the
nodal (π/2,π/2) and the anti-nodal (0,π)magnons, a discrepancy stemming
from higher-order spin-exchange processes at large systems.

To demonstrate the advantage of the FRS scheme in FDQMC, we turn
our attention to the Kondo lattice model, described by the Hamiltonian

HK ¼ �t
X
ijh i;s

ðcyiscjs þ h:c:Þ þ JK
2

X
i;s;s0

cyisσss0cis0 � Sfi : ð14Þ

Here, the spin of an itinerant electron couples to a localized spin-1/2
moment Sfi with strength JK. By decomposing Sfi using the slave-fermion
representation ð1=2ÞPs;s0 f

y
isσss0 f is0 , the Kondo coupling in Eq. (14) is

equivalent to an effective local, fermionic interaction

� JK
4

X
s

cyisf is þ h:c:

 !2

þ const:; ð15Þ

which is feasible for simulation using DQMC algorithms66. However, the
slave-fermion decomposition requires the constraint nfi" þ nfi# ¼ 1, a
condition not inherently met by traditional DQMC at finite temperatures.
Common solutions to this dilemma include switching to the Anderson
model with f-site repulsionUf∝ 1/JK, or introducing a strongUf to suppress
both double and zero occupancies66. These approaches, however, induce
approximations and potential bias. The strong artificial repulsion also
affects the numerical stability, resulting in severe sign problems when
doping. In contrast, the FRS schemeof FDQMCstrictly adheres to the slave-
fermion constraint, thereby serving as an exact finite-temperature solver for
Kondo-type spin-fermion interactions.

Figures 6c–f presents FDQMC-simulated spectral results of ahalf-filled
Kondo-lattice model in an 8 × 8 cluster. We choose the Kondo coupling
JK = 2t and consider itinerant electrons in the canonical ensemble. The
Kondo resonance occurs at a low-temperature T = 0.2t, resulting in the
hybridization gap and the heavy-fermion dispersion inA(k,ω) (see Fig. 6c).
At the same time, ~Sðq;ωÞ exhibits pronounced magnon dispersion at
T = 0.2t (see Fig. 6d). The excitation energy at q = (π, π) remains finite,
revealing the spin-gapped phase for J > Jc ≈1.45t

66. At high temperatures,
e.g., T = t presented in Fig. 6e, f, the hybridization gap closes, resulting in
diminishedmagnonexcitations.Thedecouplingbetween itinerant electrons
and local spins reflects the asymptotic freedom of the Kondo lattice (JK > 0)
in the high-temperature limit.

Discussion
The FDQMC algorithm enables important sampling of the joint distribu-
tion of Fock-state samples and auxiliary fields. Since the η-update is inde-
pendent of the specific type of the auxiliary field, this approach is adaptable
across various DQMC and auxiliary field QMC algorithms. As shown in
Supplementary Note 4, incorporating Fock-state sampling does not sig-
nificantly influence the convergence ofMonte Carlo sampling, ensuring the
efficiency of FDQMC. Instead, the access to Fock-state information benefits
the ensemble selecting by imposing FRS on the Markov chain. The com-
plexity of FDQMC is considerably reduced compared to the existing
ensemble-restricted DQMC algorithms. This flexibility in accessing diverse
ensembles broadens its applicability to non-Hubbard-like models, such as
heavy-fermion systems with spin–fermion interactions, as discussed in
this work.

The Fock-state sampling of FDQMC aligns closely with the cutting-
edge quantum gas microscopy experiments with ultracold atoms in optical
lattices15. Therefore, FDQMC acts as a numerical emulator for fermionic
quantum simulators, extending the range of conditions under which cold-
atom experiments can be accurately calibrated. This is especially important
for simulating higher-order correlations and entanglement-related prop-
erties, where minimizing statistical errors is necessary. With access to mil-
lions or even billions of sampled Fock-state samples, FDQMC further paves
the way for the development of more sophisticated machine learning

models. These models can extract in-depth insights beyond the rigorous
quantum simulations, thereby expediting experimental discoveries41.

Methods
Update strategy
For each update epoch, we alternately performupdates for the auxiliaryfield
x and the Fock state ∣η

�
. The update algorithms leverage two different

formulations of Zx;∣ηi. On one side, Zx;∣ηi is a determinant

Zx;∣ηi ¼ det PT
∣ηiBxP∣ηi

h i
: ð16Þ

Here, P∣ηi
h i

ij
¼ δi;pj is the projection matrix of a Fock state ∣ηi, with pj

denoting the site of the jth particle. Bx represents the single-particle

propagator T e�
R β

0
H½xðτÞ�dτ , associated with x. Eq. (16) shares the same

mathematical structure used in the zero-temperature projective quantum
Monte Carlo (PQMC)3,5–7. Hence, the x-direction update follows the same
strategy as PQMC.

At the same time, Zx;∣ηi is proportional to the multi-point correlation
under the auxiliary field configuration x in the grand-canonical ensemble,

Zx;∣ηi ¼ tr½ρx�
YNm

i¼1

niðηÞ
* +

x

: ð17Þ

In this formula, ni(η) denotes the electron (hole) density at site i, if the site is
(is not) occupied in the Fock state ∣η

�
andNm represents the system size. To

facilitate the rank-1 update for ∣η
�
, we construct an auxiliary matrix

M∣ηi ¼

η1
η2

. .
.

ηNm

0
BBBBB@

1
CCCCCA� GðgrÞ

x

2
666664

3
777775

�1

; ð18Þ

where ηi denotes electron density of ∣η
�
at site i and GðgrÞ

x ¼ ðI þ BxÞ�1 is
the equal-timeGreen’s function under auxiliary field x in a grand-canonical
ensemble. The numerically stable inversion of Eq. (18) is presented in
Supplementary Note 5. The acceptance ratio for a proposed η-flip at site i,
namely η0j ¼ ηj þ ð�1Þηiδij, is

Racc ¼ �1� ð�1Þηi M∣ηi
h i

ii
: ð19Þ

Upon acceptance of the flip, thenMη is updated as

M∣η0i
h i

jk
¼ M∣ηi
h i

jk
þ ð�1Þηi

Racc
M∣ηi
h i

ji
M∣ηi
h i

ik
: ð20Þ

Each epoch of theMonteCarlo updates consists of first updating x across all
spatial and temporal sites, followed by proposing η-flips for each spatial site.
The derivation of Eqs. (18)–(20) is in Supplementary Note 6.

The computational complexities for constructing the initial M∣ηi and
for performing the iterations of η-flips both scale as O N3

m

� �
. With the

Sherman–Morrison fast update6, the complexity of updating the auxiliary
field x is O βN3

m

� �
. Due to the imaginary time dimension, the cost for the

latteroverwhelms that of theη-upates.Therefore, the computational cost for
FDQMC is only marginally more than that of the standard DQMC.

Fock-state restrictive updates
In the canonical ensemble,where the particle number isfixed, theFock-state
is updated by randomly swapping a particle at site i with a hole at site j, as
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shown in Fig. 2a. The acceptance ratio for such a swap is given as

Rswap
acc ¼ 1þ ð�1Þηi M∣ηi

h i
ii
þ ð�1Þηj M∣ηi

h i
jj

þ ð�1Þηiþηj M∣ηi
h i

ii
M∣ηi
h i

jj
� M∣ηi
h i

ij
M∣ηi
h i

ji

� 	
:

ð21Þ

Upon acceptance of the swap, ∣η
�
and M∣ηi are updated by successively

imposing single-site η-flips [i.e., Eq. (20)] at the sites of i and j.
The complexity of widely used canonical DQMC algorithms67–69,

which derive canonical ensemble properties by projecting from the grand-
canonical ensemble using a Fourier projector, scales as O βN4

m

� �
for

observablesbeyond two-point correlations. In contrast, FDQMCavoids this
additional overhead by directly sampling the canonical ensemble, keeping
the complexity at O βN3

m

� �
. Meanwhile, truncation algorithms are applic-

able to FDQMC to further reduce the complexity of simulating dilute fer-
mionic systems70.

Static and dynamical observables
The expectation value of general observableO is evaluated by decomposing
into the Green’s function using Wick’s theorem. The equal-time Green’s
function ½Gx;∣ηi�ijðτ; τÞ ¼ hciðτÞcyj ðτÞix;∣ηi for a specific ðx; ∣ηiÞ is

Gx;∣ηiðτ; τÞ ¼ I � Bxðτ; 0ÞP∣ηi PT
∣ηiBxðβ; 0ÞP∣ηi

h i�1
PT
∣ηiBxðβ; τÞ; ð22Þ

where the single-particle propagator from τ1 to τ2 is Bxðτ2; τ1Þ ¼
T e

�
R τ2

τ1
H½xðτÞ�dτ

. Note that Gx;∣ηi differs from the grand-canonical GðgrÞ
x

with unspecified ∣ηi. For observablesO ¼P∣ηiw∣ηi∣η
�hη∣ that are diagonal

in real space, e.g., the charge and spin correlations, Oh ix;∣ηi simplifies tow∣ηi.
This simplification significantly reduces the computational cost for higher-
order correlations by directly evaluating the sampled Fock states.

The single-particle spectrum is computed via
A(k, ω) =A+(k, ω)+A−(k, ω), where the particle-addition spectrum
A+(k, ω) and the particle-removal spectrum A−(k, ω) are extracted from

cyksðτÞcksð0Þ
D E

¼
Z

Aþðk;ωÞe�τωdω; ð23Þ

cksðτÞcyksð0Þ
D E

¼
Z

A�ðk;ωÞeτωdω; ð24Þ

separately, with cyks ¼ ð1= ffiffiffiffi
N

p ÞPrc
y
rse

ik�r . The dynamic spin structure fac-
tor S(q, ω) is obtained through

SzqðτÞSzqð0Þ
D E

¼
Z

Sðq;ωÞe�τωdω ð25Þ

with Szq ¼ ð1= ffiffiffiffi
N

p ÞPrS
z
re

iq�r . Both spectra in real frequency are calculated
using the analytic continuation through the maximum entropy method65.

Data availability
The data supporting the findings of this study are available in the public
repository Figshare.
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