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Signatures of the attractive interaction in spin spectra of one-dimensional cuprate chains
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Identifying the minimal model for cuprates is crucial for explaining the high-7, pairing mechanism. Recent
photoemission experiments have suggested a significant near-neighbor attractive interaction V in cuprate chains,
favoring pairing instability. To determine its strength, we systematically investigate the dynamical spin structure
factors S(g, w) using the density matrix renormalization group. Our analysis quantitatively reveals a notable
softening in the two-spinon continuum, particularly evident in the intense spectrum at large momentum. This
softening is primarily driven by the renormalization of the superexchange interaction, as determined by a
comparison with the slave-boson theory. We also demonstrate the feasibility of detecting this spectral shift in
thin-film samples using resonant inelastic x-ray scattering. Therefore, this provides a distinctive fingerprint for
the attractive interaction, motivating future experiments to unveil essential ingredients in cuprates.

DOLI: 10.1103/PhysRevResearch.6.L.032068

Understanding the pairing mechanism in high-T supercon-
ductors, particularly in cuprates, is essential for technological
advancements in energy and quantum information science. It
also presents a significant challenge to the solid-state theory,
driving the studies on quantum materials [1] and the devel-
opment of various quantum many-body numerical methods
[2-4]. The prevailing view is that a d-wave pairing instability
arises from strong electronic correlations [5,6], describable
by the Hubbard model. With the advancements in numerical
techniques, represented by the density matrix renormalization
group (DMRG) and quantum Monte Carlo, recent discussions
have progressed towards an unbiased evaluation of super-
conductivity and other emergent phases in models akin to
Hubbard. In this context, the single-band Hubbard model has
successfully produced multiple phases in cuprates, including
the antiferromagnetism [7,8], stripe fluctuations [9-11], and
strange metallicity [12—14]. Although the Hubbard model and
its derived ¢-J model have demonstrated quasi-long-range
superconductivity with specific geometries and parameters
[15-18], determining whether these models can sustain robust
superconductivity in the two-dimensional (2D) thermody-
namic limit, especially on the hole-doped side, remains an
active area of research [19-28].

In parallel to expanding numerical limits, experiments
have unveiled additional ingredients in cuprates beyond the
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Hubbard model. Polaronic features indicative of electron-
phonon coupling have been observed in angle-resolved
photoemission spectroscopy (ARPES) [29-32] and inelas-
tic neutron scattering (INS) [33]. More recently, ARPES
studies have uncovered a pronounced holon-folding feature
in doped 1D cuprate chains, suggesting an additional near-
neighbor attractive interaction between electrons [34]. This
attraction is likely mediated by phonons [35-37]. Introduc-
ing this previously overlooked interaction into the Hubbard
model significantly enhances the instability of superconduc-
tivity [38—42]. Hence, accurately determining the form and
strength of attractive interactions is crucial for the theoretical
reproduction of superconductivity, potentially unraveling the
enigma of the high-7, pairing mechanism.

As the only evidence for the near-neighbor attractive in-
teraction V, the holon-folding peak observed in ARPES
constitutes a nuanced detail within a continuum [34]. While
the magnitude of this feature can demonstrate the existence of
V, it introduces uncertainty regarding the interaction strength.
More precise quantification of its magnitude is imperative
within ARPES, necessitating the pursuit of additional spectral
signatures. Therefore, this Letter explores the influence of this
attractive V on the dynamical spin structure factor S(g, w),
which can be measured by INS or resonant inelastic x-ray
scattering (RIXS). By combining unbiased DMRG simula-
tions and analytic slave-boson approximations, we identify
a softening in the two-spinon continuum and elucidate its
origin. This softening is most evident near g ~ m, where
the spectral intensity is pronounced. Thus, it can be accu-
rately quantified and remains robust even when considering
the finite core-hole lifetime in RIXS, providing an efficient
experimental fingerprint for precisely assessing microscopic
interactions.
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We focus on the extended-Hubbard model (EHM), de-
scribed by the Hamiltonian

H=—t Z (CLC]'U + H.c.)+ UZ nipn;y +V Z NigNjo’,
(ij).o i (ij),o,0'
()

where c;y, (CL) annihilates (creates) an electron at site i with
spin o and n;, = cl.T(,ci(7 denotes the local electron density.
This model is particle-hole symmetric, hence we refer to
the doping x without distinguishing between hole or electron
carriers. For 1D cuprate chains such as Ba,_,Sr,CuQOs.;, the
nearest-neighbor (NN) hopping >~ 0.6 eV [34] and we take
a relatively modest on-site Coulomb interaction U =~ 6¢ to
expand the range of magnetic excitations. In this Letter, we
consider an attractive NN interaction (V < 0), whose value
was approximately identified as —¢ in the ARPES study [34].
When V = 0, the EHM simplifies to the Hubbard model.

We employ DMRG to calculate the ground state |G) of
an open-boundary EHM, which is numerically exact upon
convergence [43,44]. The time evolution of the wave function
after a local spin excitation is simulated using the time-
dependent variational principle (TDVP) [45], resulting in the
unequal-time correlation function

Sij(t) = =i (@) (GI[57 (1), $5(0)]IG) . )

Here, S‘f = (é;}én — 61.16,- 1)/2 represents the z-component
spin operator at the i-th site. In this work, we keep the
maximum bond dimension D = 2000, with truncation error
around 1078, The time evolution step is set to 8t = 0.05¢~!
and the evolution is truncated at 7, = 40¢~!. All the results
presented in this Letter are obtained using an L = 48 chain.
The convergence of the calculation is verified in Supplemental
Material (SM) [46].

A space-time Fourier transform applied to S;;(¢), by im-
posing translational symmetry, yields the dynamical spin
structure factor S(g, w). However, since our DMRG uses
an open boundary condition, this introduces artifacts in
the transform to momentum space. To better approximate
the thermodynamic limit, we postprocess the correlation
function using the cluster perturbation theory [47—49]. A spin-
exchange interaction J = 4t2/(U — V') across the boundary is
employed to perturbatively correct the boundary effects:

S@.@) =7, [1 - h(q)5<w>lfe |

ij
tl“ .
hmn(q) = JeiqLé‘m,nJrL and Sij(w) = / Sij(t)e_lwtdt'
0
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This correction mitigates the boundary effects and leads to
continuous momentum resolution [50,51]. The Hanning win-
dow function is applied for the time transform.

In the case of the undoped parent compound, the S(g, @) of
high-quality Sr,CuOj3 samples has been successfully analyzed
through INS and RIXS [52,53], showing a two-spinon con-
tinuum separated from high-energy orbital excitations [54].
As shown in Fig. 1(a), simulations based on the Hubbard
model accurately reproduce this continuum. Its upper and
lower bounds align with the Bethe ansatz, i.e., ’TZ—J sin (%) and

(a) Hubbard model

(b) extended Hubbard model
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FIG. 1. Dynamical spin structure factor S(gq, w) for the half-filled
(a) Hubbard model and (b) EHM with V = —¢, calculated using
DMRG in an L = 48 chain. The red solid (dashed) line represents the
lower (upper) bound derived from the Bethe ansatz for the Hubbard
model and the EHM with a modified J.

J sing [55]. The spectral weight is predominantly concen-
trated near the lower bound, with a gapless excitation at g =
. Upon introducing a near-neighbor attractive interaction
V = —t, the S(g, w) for the EHM resembles that observed
in the Hubbard model [see Fig. 1(b)]. This similarity allows
for the adjustment of J = 4¢2/(U — V) in the Bethe ansatz,
yielding upper and lower bounds that are consistent with the
DMRG simulations. At g = w, where the intensity peaks,
while the upper bound experiences a 14% reduction, the corre-
sponding lower bound remains gapless. Given that the spectral
intensity resides primarily at the lower bound, it is challenging
to characterize the strength of V in the undoped system.

The impact of the attractive interaction is more evident
in doped systems, which can be measured through the re-
cently synthesized Ba;_,Sr,CuO3,s [34]. For the Hubbard
model, doping shifts the nesting momentum g to (1 — x)m
[see Fig. 2(a)]. This shift reflects the gapless excitation be-
tween Lk of the spinon Fermi surface (see the SM [46]).
As a result, the ¢ = 7 excitation becomes gapped. The gap
size increases with doping and reaches 2.5t ~ 1.5 eV at 50%
doping. Unlike the undoped systems, the spectral weight max-
imizes at both the nesting momentum and g = , allowing for
the determination of the impact of V at a finite energy.

By incorporating the attractive V = —¢, the S(gq, w) of the
doped EHM experiences an enhancement in the momentum-
integrated intensity, as the attractive V suppresses doublon-
hole fluctuations. In contrast, the spectral weight at the nesting
momentum decreases due to the reduction in the effective
superexchange J [see Fig. 2(b)]. Although this nesting mo-
mentum shifts slightly toward m, it remains close to 2kp =
(1 — x)mr, similar to the Hubbard model (see the SM [46]).
Importantly, the peak energy at g = m exhibits significant
softening compared to the Hubbard model at the same dop-
ing. To better visualize this softening, we further present the
differential spectra of the Hubbard and EHM model for each
individual doping in Fig. 2(c). This softening increases from
0.17 at 12.5% doping to 0.6t at 50% doping. While the spectral
intensity decreases with doping, the relatively high intensity
at ¢ =m and the 0.5¢ ~ 0.3 eV shift enable experimental
characterization in doped 1D cuprate chains. Furthermore, as
shown in Fig. 2(d), the ¢ = 7w peak energy almost linearly
depends on the carrier concentration. This finding provides an
additional method to extrapolate the peak positions at doping
levels beyond the reach of experimental resolution.

L032068-2



SIGNATURES OF THE ATTRACTIVE INTERACTION IN ...

PHYSICAL REVIEW RESEARCH 6, L032068 (2024)

—
Q
—

3 T
=2 &
— [on
g1 2

o

0
(b)3 T
=2 =
R h

g -+
(c) -0.03=—=0.03
= 2[ 1T - i 171 E
Tt 1t : - 1t 17

0 . : P .

0 /2 T 0 /2 T 0 /2 ) /2 T 0 1/4 1/2
q q q q doping

FIG. 2. The doping dependence of S(g, w) for the (a) Hubbard model and (b) EHM with V = —¢. The red solid (dashed) lines represent
the lower (upper) bound obtained from the slave-boson mean-field theory. (c¢) The difference in S(g, w) between the Hubbard model and EHM
with V = —t, highlight the softening of two-spinon continuum. (d) A focused view on the doping dependence of the spectra at ¢ = 7 for both

the Hubbard model (upper) and EHM (lower).

To elucidate the reason for this softening, we estimate the
bounds of spin excitations using a slave-boson mean-field
approach, which has been shown to closely approximate the
compact support of S(g, w) in both Hubbard and 7-J models
[56]. Within this framework, we first map the extended-
Hubbard model into the corresponding #-J model with J =
4t /(U — V). The constrained electron creation operator Z’L
in the 7-J model is then decomposed into E; = ﬂZai, where
fii creates a spinon and @; annihilates a holon at site i.
The exclusion of double occupancy is enforced by alTai +
> flf, fi- = 1. By applying the resonance valence bond
mean-field theory to both spinons and holons, we obtain
an effective spinon dispersion & = —(JD + 2tG) cosk (see
detailed derivations in SM [46]). Its coefficients depend on
the mean-field tunneling of spinons D =Y (fi fit1,) =
7 cos (%5)/2 and holons G = (ajaiﬂ) = sin(wx)/m, both of
which vary with doping. Finally, S(g, @) can be approximated
by the Lindhard response function for spinons:

1 SrGrrg) — fr&)
5, @)ur = 4N Ika: o+ & — &g +I0F )

Here, fr(k) = 6(kp — k) represents the Fermi-Dirac distribu-
tion at zero temperature. The upper and lower bounds derived
from this slave-boson theory align with conclusions drawn
using the Bethe ansatz for the half-filled Hubbard model [56],
with adjustments to J in the EHM delineating the boundaries
in Fig. 1(b).

At finite doping, as discussed in Figs. 2(a) and 2(b), the
slave-boson results continue to accurately capture the upper
and lower bounds of the S(g, ) for both models below 40%
doping. This indicates that the softening of the two-spinon
continuum is primarily due to the modification of the ef-
fective superexchange interaction by the attractive V. The
lower bound starts to deviate from the simulated spectral
peaks beyond 40% doping. This deviation arises because the

t-J approximation of the Hubbard-like model omits corre-
lated hoppings (commonly referred to as the three-site terms),
which are negligible near half filling but become significant
at heavy doping [56-59]. Given that existing experiments in
Ba,_,Sr,CuOs,s achieve up to 40% doping, the analytical
estimation remains robust within the doping ranges of these
accessible materials.

To establish benchmarks for accurately identifying the
interactions from experiments, we explore how the S(gq, )
varies with different strengths of V. At 12.5% doping [see
Fig. 3(a)], the spectral distribution evolves continuously from
the Hubbard model (V = 0) to EHM with V = —1.2¢. In-
creasing V further to —1.5¢ triggers a phase separation [38],
manifested as a shift of gr to = (see the SM [46]). Apart
from the phase separation, the two-spin continuum softens due
to the renormalization of J. Its spectral distribution closely
follows the slave-boson-derived bounds, particularly evident
in the pronounced spin excitations at ¢ = 7 [see Fig. 3(b)].
Remarkably, for 12.5% doping, peak positions at ¢ = m are
as low as 0.22 — 0.45¢, corresponding to ~130-270 meV.
To better resolve the excitation energy at low dopings, an
alternative is examining the spectrum at ¢ = kr instead, where
the peak energy approaches ¢. Despite its lower intensity, the
peak energy at ¢ = kg corroborates the predictions from the
slave-boson theory [see Fig. 3(c)].

The dependence of S(g, @) on varying V strengths at a
higher doping level (37.5%) is shown in Fig. 3(d). At this
doping, the spectral distribution is significantly influenced by
changes in V. Focusing on the pronounced spectrum at ¢ = 7
[see Fig. 3(e)], its high excitation energy in the Hubbard limit
allows for a more evident softening (~0.96¢). This linear
and substantial dependence on V' provides a precise basis for
accurately quantifying the interaction strength experimentally.
However, at such a high doping level, the deviation from the
slave-boson theory and exact numerical simulations becomes
more severe, especially for stronger V. Thus, in the context
of the heavy doping regime, it is recommended to rely on
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FIG. 3. (a) The impact of the near-neighbor interaction V on the dynamical spin structure factor S(g, w), with V varying fromV = —0.3 to
—1.5¢ at a doping level of x = 12.5%. The red solid (dashed) lines represent the lower (upper) bound obtained from the slave-boson mean-field
theory. (b), (c) The V dependence of spectra at (b) ¢ = 7 and (c) ¢ = 77 /16 (the kr). (d)—(f) Same as (a)—(c) but for a higher doping level of

x =37.5%.

simulation results rather than analytical predictions as bench-
marks for future experiments.

The discussions thus far have focused on the dynamical
spin structure factor S(q, w), typically measured through INS.
However, the study of doped 1D cuprate chains currently re-
lies on thin-film Ba,_,Sr,CuO3, s samples, posing a challenge
for INS experiments. Given the unavailability of single-crystal
samples in the near future, an alternative to measuring S(q, @)
is the (Cu L-edge) RIXS. At the end of this Letter, we further
discuss the feasibility of utilizing RIXS to assess the softening
caused by the attractive V. As a two-step scattering process,
the RIXS cross section is formulated as [60]

1 1
1 s W, Win =_I W \I'L’ 5
(0.0, ) = 1 (] o ) (5)

where the final-state wave function depends on the incident
energy wi,, in the form of

, 1
— q-r ¥
ROEDI D —E—a w0 ©®
1,0

In these equations, q denotes the momentum transfer, w the
energy loss, and E¢ the ground-state energy. The dipole tran-
sition operator Dj (at site j) facilitates the electronic hopping
between the core and valence bands by absorbing (and emit-
ting) an x-ray photon at a specific edge. Accordingly, the
intermediate-state Hamiltonian #' includes a core hole and
its interaction with valence electrons. Additional details re-
garding the RIXS simulations are provided in the SM [46].
The intermediate state’s lifetime is governed by the phe-
nomenological parameter 1/I". Previous studies have shown
that RIXS, with -0 polarizations, effectively approximates
S(q, o) for alarge I" [61]. To examine the capability of RIXS
in delineating the V-induced softening, we adopt I' =, re-
flecting realistic conditions in cuprates [62,63]. The core-hole
interaction is set to U, = —3¢ [64,65].

Figure 4(a) presents the RIXS spectrum for the Hubbard
model at ¢ = 7, simulated using exact diagonalization on a
16-site chain. At 37.5% doping, the spectrum exhibits two
distinct resonant peaks along the incident energy (wj,) axis,
corresponding to the lower and upper Hubbard bands, respec-
tively. Both resonances suggest the same continuum across
the energy-loss axis, reflecting the two-spinon excitations.

We primarily focus on the resonance at higher energy (upper
Hubbard band), because its intensity exhibits a decrease with
increased doping, a trend similar to that observed in the spin
structure factor. As shown in Fig. 4(b), the normalized RIXS
cross section at the resonant energy aligns with the S(gq, )
simulated by DMRG [the ¢ = 7 cut of Fig. 2(a)]. To reduce
the influence of selecting the incident energy, we also con-
sider the wj,-integrated RIXS intensity, which shows minimal
difference in the identified softening.

For the 37.5% doped EHM [see Fig. 4(c)], the spectral
distribution experiences a softening along the incident energy
wip due to the reduction of effective electronic site energy
with V = —r. At the same time, the RIXS spectrum also
softens along the energy loss w axis. A comparison between
Figs. 4(b) and 4(d) reveals a shift in the peak position from
2.04¢ in the Hubbard model to 1.61¢ in the EHM. This soft-
ening not only qualitatively mirrors the conclusion discussed
above regarding S(gq, w), but also quantitatively matches the

extended-Hubbard model
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FIG. 4. (a) RIXS simulation with ¢ = for a 37.5% doped
Hubbard model. (b) The comparison between RIXS at the resonant
energy (blue solid line with shade), RIXS integrated along w;, (blue
dashed line), and the S(g, w) (red). All spectra have been normalized
to the same integrated area for comparability. The red arrow high-
lights the peak energy in S(g, w). (c), (d) Same as (a) and (b) but for
the EHM with V = —t.
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observed peak shift in S(g, ®) (from 1.95¢ to 1.54¢). The in-
fluence of the nonlocal V on the intermediate state introduces
more discrepancies in the spectral shape between RIXS and
S(q, ). Nonetheless, these discrepancies are mainly in the
intensity distribution and do not hinder the accurate iden-
tification of the peak and lower bound of the two-spinon
continuum. The SM compares RIXS and S(g, w) at other
momenta and doping [46]. Hence, we find RIXS to be an
efficient tool for quantifying the strength of V in 1D cuprate
chains.

To summarize, we have systematically investigated the
spin spectra of extended-Hubbard models with various at-
tractive interactions using DMRG. The observed softening
of the two-spinon continuum, particularly pronounced near
q = m, sets a numerical basis for future experiments de-
signed to accurately quantify this interaction in cuprates.
Furthermore, our discussion about RIXS spectra, with a finite
core-hole lifetime, confirms that the peak softening remains
precisely detectable, thereby motivating spectral characteri-
zations on thin-film samples such as Ba,_,Sr,CuQOs_s. This
softening is primarily attributed to the renormalization of the

superexchange interaction by the attractive V, as elucidated
through comparisons with slave-boson mean-field theory. The
attractive V between electrons is presumably mediated by
phonons, along with other longer-range interactions [35].
However, these longer-range ones are not expected to alter
the superexchange interaction to the lowest order and hence
not significantly impacting the spin spectra. Our choice of a
relatively modest Hubbard U has accounted for the phonon-
mediated on-site interaction, which can be independently
determined through the Mott-gap excitations measured by
inelastic x-ray scattering or indirect RIXS [66-68].
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