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Charge density wave state in extremely overdoped cuprates driven by phonons
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Recent resonant x-ray scattering (RXS) experiments revealed a novel charge order in extremely overdoped
La2−xSrxCuO4 (LSCO) [Li et al., Phys. Rev. Lett. 131, 116002 (2023)]. The observed charge order appears
around the (π/3, 0) wave vector, distinct from the well-known stripe fluctuations near 1/8 doping, and persists
from cryogenic temperatures to room temperature. To investigate the origin of this charge order in the overdoped
regime, we use determinant quantum Monte Carlo (DQMC) simulations to examine correlated models with
various interactions. We demonstrate that this distinctive CDW originates from remnant correlations in extremely
overdoped cuprates, with its specific pattern shaped by interactions beyond the Hubbard model, particularly
electron-phonon couplings. The persistence of the (π/3, 0) wave vector across different doping levels indicates
the presence of nonlocal couplings. Our study reveals the significant role of phonons in cuprates, which assist
correlated electrons in the formation of unconventional phases.
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I. INTRODUCTION

Unconventional superconductivity (SC) in cuprates has at-
tracted extensive experimental and theoretical studies [1–5].
In addition to its promising applications in energy and quan-
tum technology, the exploration of cuprates has been driven
by numerous complex phases of cuprates [6]. These phases
can coexist with or compete against SC, challenging con-
ventional solid-state theories. A particularly significant phase
among these is the charge density wave (CDW). In conven-
tional BCS superconductors, phonons mediate an effective
electron-electron attraction that gives rise to both mobile
Cooper pairs and immobile charge modulations. These two
states compete against each other as evidenced by investi-
gations into Holstein-like models [7–9]. In cuprates, despite
having distinct pairing symmetry and potential differences in
the pairing mechanisms from BCS theory, many experiments
have revealed the presence of CDW orders or fluctuations near
the SC phase. Their proximity suggests an intertwined origin
of CDW and SC, even in the unconventional and high-Tc

materials [10–14].
Research on CDW has predominantly focused on the un-

derdoped and optimally doped cuprates [15–18], highlighting
the interplay between SC, the pseudogap phase, and CDW
[19–21]. Particularly, near 12.5% hole doping, a charge order
has been detected that manifests as a unidirectional stripe be-
havior with a periodicity of 4 unit cells (see Fig. 1). Advanced
numerical many-body methods have successfully described
this stripe order in the context of the Hubbard and Hubbard-
Holstein model [22–24]. Remarkably, the CDW emerging in
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these simulations at around 12.5% hole doping exhibits a
notable competition with d-wave superconductivity [25–27].

Recent observations of CDWs in overdoped cuprates,
specifically in (Bi,Pb)2.12Sr1.88CuO6+δ (Bi2201) [28], have
sparked a renewed interest in understanding their role in
high-Tc superconductors. This CDW phenomenon was
subsequently observed in extremely overdoped LSCO, in
the form of a charge modulation of extending over 6 unit
cells in the antinodal direction (see Fig. 1) and persists up
to room temperature [29]. [Here, we refer to the (H, 0) and
(H, H ) directions as “antinodal” and “nodal,” respectively.]
This CDW starts to develop at 35% doping and maximizes in
intensity at approximately 50% doping. Despite the expected
screening of Coulomb interactions in the overdoped regime,
Fermi-surface instabilities cannot explain the origin of this
CDW [29]. This suggests that the CDW is likely driven by
other interactions. Importantly, this overdoped regime, being
distanced from the SC and pseudogap phases, may be less
affected by the dominant spin fluctuations, providing a unique
opportunity to explore intrinsic yet subleading interactions in
cuprates.
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FIG. 1. Schematic illustrating different types of charge fluctu-
ations or order observed from experiments across various doping
regimes of cuprates. The origin of the overdoped period-6 CDW
serves as the primary focus of this work.
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For this purpose, we examine the extremely overdoped
cuprates using various models, including the Hubbard model,
the Hubbard-Holstein model, and their variants. Our findings
reveal that while the Hubbard interaction correctly produces a
correlation-induced charge instability peaking at 50% doping,
it fails to capture the charge pattern with wave vector (π/3, 0).
The inclusion of electron-phonon coupling (EPC), particu-
larly nonlocal EPC, shifts the ordering wave vector from
(π, π ) to the experimentally observed (π/3, 0). Building
upon this framework, we quantify the strength and distribution
of the EPC, addressing the experimental findings in LSCO.
This work highlights the essential contributions of EPC to
correlated phases in cuprates.

The organization of this paper is as follows. We first intro-
duce the models and the DQMC method in Sec. II. Next, we
investigate charge susceptibilities in the extremely overdoped
Hubbard model, demonstrating the absence of the expected
CDW in Sec. III. We then systematically examine the impact
of phonons, with local and nonlocal EPCs, in Sec. IV. This
analysis is further generalized to bond phonons in Sec. V.
Finally, Sec. VI summarizes the conclusion and discusses po-
tential connection to superconductivity in overdoped cuprates.

II. MODELS AND METHOD

We begin our theoretical analysis by considering the
single-band Hubbard model [30,31]:

HHubbard = −
∑
i jσ

ti jc
†
iσ c jσ − μ

∑
iσ

niσ +
∑

i

Uni↑ni↓, (1)

where ciσ (c†
iσ ) annihilates (creates) an electron at site i

with spin σ and niσ = c†
iσ ciσ is the corresponding density

operator. The hopping term is defined by the one-electron
integral ti j between Wannier wave functions at sites i and
j. Under the tight-binding approximation, we limit the hop-
ping to the nearest and next-nearest neighbors, denoted as
t and t ′, respectively. This effective model for cuprates
simplifies the electronic Coulomb interaction to the onsite
Hubbard U term and the average doping to a chemical po-
tential (μ) shift. To reflect the LSCO electronic structure
determined by first-principles simulations and ARPES fit-
ting [32,33], we use t = 250 meV, t ′ = −0.15t , and U =
8t here. Notably, the experimental benchmarks for these
parameters were obtained for dopings below 30%. Due to
the lack of ARPES experiments for the extremely over-
doped regime, we assume the parameters in Eq. (1) remain
consistent across all doping levels. This assumption is
supported by the resilience of the simulated charge sus-
ceptibilities to variations in band parameters, as discussed
in Secs. III and IV.

The major simulations in this paper extend the Hubbard
models by incorporating additional EPCs. We primarily focus
on site phonons that couple to the electron density (niσ ) due to
their direct impact on charge. When the interaction is local, the
resulting model corresponds to the Hubbard-Holstein model,

described by the Hamiltonian:

HHH = HHubbard +
∑

i

[
M

2
ω2

phX 2
i + P2

i

2M

]
−

∑
iσ

gXiniσ . (2)

Here, Xi (Pi) denotes the lattice displacement (momentum) at
lattice site i, g is the onsite EPC strength, M is the phonon
oscillator mass (set as 1t−1), and ωph is the phonon frequency.
In the latter sections of this paper, we also consider nonlocal
EPC, including the nearest-neighbor coupling g′, next-nearest-
neighbor coupling g′′, next-next-nearest-neighbor coupling
g′′′, and fourth-nearest-neighbor coupling g′′′′. These models,
with these nonlocal EPCs, are collectively referred to as the
Hubbard-extended-Holstein (HEH) model:

HHEH = HHH −
∑
i,σ

⎛
⎝∑

〈i, j〉
g′Xin jσ −

∑
〈〈i, j〉〉

g′′Xin jσ

−
∑

〈〈〈i, j〉〉〉
g′′′Xin jσ −

∑
〈〈〈〈i, j〉〉〉〉

g′′′′Xin jσ

⎞
⎠. (3)

Through with various EPCs, it is important to note the onsite
Coulomb interaction U remains the dominant interaction in
all above models, reinforcing the strongly correlated nature
of cuprates. As discussed in Sec. III, this strong correlation
is crucial for accurately reproducing the doping dependence
observed in experiments and linking it to the well-known 1/8-
doped stripes [15,34].

We employ the determinant quantum Monte Carlo
(DQMC) algorithm to simulate these strongly correlated mod-
els, considering the persistence of the overdoped CDW at high
temperatures [28,29]. DQMC is an unbiased quantum many-
body method, which transforms the thermal density matrix
into a summation over Hubbard–Stratonovich field configura-
tions, which are then estimated through stochastic importance
sampling [35,36]. Our primary goal is to address the charge
order observed in the RXS experiments, with a focus on the
charge susceptibility χc(q, ω) at ω = 0,

χc(q, ω = 0) =
∫ β

0
dτ

∑
i, j

e−iq·(ri−rj )

× [〈ni(τ )n j (0)〉 − 〈ni(τ )〉〈n j (0)〉]. (4)

Here, β = 1/T denotes the inverse temperature, and ni =
ni,↑ + ni,↓ represents the electron density at site i. If interac-
tions are neglected, χc can be evaluated using the Lindhard
response function. However, as discussed in Ref. [29], this
estimation fails to explain the experimentally observed CDW.

Simulating the Hubbard model with nonlocal site phonons
presents significant challenges compared to the Hubbard and
Hubbard-Holstein models. The latter two models with only
local interactions require rank-1 DQMC updates; in contrast,
the presence of nonlocal EPCs affect multiple electron sites
at once, necessitating a rank-r update. Here, r denotes the
number of electron sites coupled to a single phonon. For
example, the HEH model involving g′ and g′′ requires rank-9
updates (e.g., 1 + 4 + 4). The DQMC update is realized by
the sampling weight ratio between two configurations, with
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FIG. 2. The charge susceptibility χc(q, ω = 0) obtained from the Hubbard model on a 12 × 12 square lattice at temperature T = 0.4t . The
susceptibility is normalized for each doping (panel). For doping level 5%–20%, the white circles mark the wave vector fitted by four symmetric
peaks; for other doping levels, they mark the maximal instability among all momenta. The upper ribbons indicate the corresponding phase.
The last panel summarizes the doping dependence of charge susceptibility at q = (π, π ) and the experimentally relevant (π/3, 0).

the electronic part given by

Rσ = det[I + 	(τ )(I − Gσ (τ, τ )]

= det

⎛
⎜⎜⎜⎝

1 + 	i1 Ai1,i1 	i1 Ai1,i2 · · · 	i1 Ai1,ir

	i2 Ai2,i1
. . .

. . .
...

...
. . .

. . .
...

	ir Air ,i1 · · · · · · 1 + 	ir Air ,ir

⎞
⎟⎟⎟⎠.

(5)

In this equation, the 	(τ ) matrix contains r nonzero elements,
corresponding to the rank-r update [37]. The phonon energy
contribution, e

∫ β

0 dτE (τ ) is also included in the total partition
function. Thus, the update ratio for the Metropolis algorithm
follows

Rtot = R↑R↓ exp(−δτ	E ). (6)

Here, 	E (x1, · · · , xτ , · · · ) = E (x1, · · · , xτ + δx, · · · ) −
E (x1, · · · , xτ , · · · ) represents the energy difference between
two phonon configurations, with xτ being the phonon
displacement at imaginary time τ .

Besides the HEH model with site phonons and the DQMC
method introduced so far, the subsequent sections will also
employ a zero-temperature method for benchmarking (in
Sec. IV C) and discuss the effects induced by bond phonons
(in Sec. V). To maintain the clarity of the discussion and
avoid distracting the reader from the primary focus, we have
postponed the introduction of these supplementary models
and methods until their respective sections.

III. ABSENCE OF OVERDOPED CDW
IN THE HUBBARD MODEL

Using the Hubbard model, we examine the influence of
strong electron-electron correlations on the behavior of ex-
tremely overdoped cuprates. Figure 2 presents the doping
dependence and momentum dependence of χc at T = 0.4t ,
corresponding to 1000 K. A 12 × 12 square cluster is em-

ployed to maintain D4h symmetry, ensuring an unbiased
comparison of charge instabilities along the nodal and antin-
odal directions. Given the substantial variation in charge
susceptibility—ranging from nearly zero at half-filling to sig-
nificant levels at high doping—we normalize χc(q, ω) by
its maximum intensity at each doping level to highlight the
relative spectral weight distribution across momentum space.

As the doping increases, the Hubbard model reveals three
distinct behaviors in charge fluctuations. At and near half-
filling, the system is dominated by an insulating antiferro-
magnetic (AFM) order, which suppresses charge fluctuations,
resulting in a smaller χc. The remaining charge fluctuations
are centered around the wave vector (π, π ), corresponding
to the subdominant doublon-hole fluctuations between nearest
neighbors [38]. At approximately 5% doping, the system tran-
sitions from an AFM state to stripe fluctuations, evidenced by
the emergence of prevailing wave vectors along the antinodal
direction. In finite systems without C4 symmetry breaking, the
peaks in charge susceptibility manifest in both the x and y
directions (see Appendix A) [22,34].

Beyond 25% hole doping, the stripe fluctuations are grad-
ually replaced by checkerboard charge fluctuations with q =
(π, π ). These (spatially) short-range fluctuations stems from
strong correlations caused by the repulsive Hubbard U , which
tends to associate one hole with a neighboring doublon. As
the doping increases from 25% to 50%, the momentum distri-
bution of charge fluctuations remains qualitatively consistent,
while the overall intensity increases rapidly. This rise in in-
tensity is attributed to unraveled charge carriers from the AFM
background. However, this upward trend halts, and the suscep-
tibility starts to drop at around quarter filling (50% doping),
where a singly occupied checkerboard pattern develops. Fur-
ther doping beyond 50% disrupts this checkerboard pattern,
leading to a reduction in intensity.

The doping dependence of the charge susceptibility,
obtained from the Hubbard model, successfully captures the
experimental observations of the overall intensity in extremely
overdoped cuprates [29]. The maximum at quarter filling
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FIG. 3. The doping dependence of charge susceptibilities at
(π, π ) and (π/3, 0), obtained from the Hubbard model with U = 8t
and various t ′ values. All simulations are performed at T = 0.4t . The
error bars are smaller than the symbol sizes.

reflects the tendency towards a singly occupied checkerboard
pattern, as the Hubbard interaction suppresses double
occupancy. Consequently, the experimentally observed
doping dependence reflects the remnant correlations present
in doped cuprates [39–44], which cannot be explained
by the Fermi-surface instability alone (see discussions in
Appendix A and in Ref. [29]).

To further investigate the influence of Fermi surface and
band structure, we examine the t ′ dependence of the charge
susceptibility across varying levels of hole doping. As shown
in Fig. 3, the charge susceptibilities at (π, π ) and (π/3, 0)
exhibit similar doping dependence across different t ′ values,
representing specific band structures and materials. The re-
sults consistently show that charge susceptibility at (π, π )
exceeds that at (π/3, 0) in the heavily doped regime. Thus,
the emergence of a checkerboard charge instability at quarter
filling, rather than a (π/3, 0) charge order, is independent of
specific band structures in the Hubbard model, although the
exact intensities vary quantitatively.

Our simulations using the Hubbard model with various
parameters demonstrate that, although the model accurately
captures the doping-dependent behavior driven by correla-

tions, it fails to precisely replicate the momentum distribution
seen in experiments [29]. Once the Hubbard model is doped
beyond the stripe regime, the charge response consistently
manifests dominance at q = (π, π ) across all band structures
relevant for cuprates. Thus, we conclude that the Hubbard
model is insufficient for explaining the experimentally ob-
served overdoped CDW.

IV. PHONON-MEDIATED OVERDOPED CDW

A natural extension of the Hubbard model involves in-
corporating additional interactions. Recent investigations into
1D cuprate chains have revealed the significant role of at-
tractive nonlocal interactions mediated by phonons [45–51].
These interactions are essential for accurately describing the
behavior of cuprates, especially superconductivity [52–55].
Moreover, experimental data from underdoped and optimally
doped cuprates suggest that long-range effective interactions,
especially attractive ones, are necessary to fully explain the
quasi-circular patterns observed in x-ray scattering [56,57].
With these considerations in mind, we extend the Hubbard
model to include EPCs and investigate their influence on the
extremely overdoped CDW.

A. Hubbard-Holstein model with local coupling

Building on the Hubbard model findings depicted in Fig. 2,
we incorporate local e-ph coupling by adopting the Hubbard-
Holstein model, as formulated in Eq. (2). Our previous analy-
sis of the Hubbard model identified a peak of charge suscep-
tibilities at around 50% doping. This leads us to focus on how
phonon interactions alter the momentum distribution of these
susceptibilities. Due to the computational complexity posed
by the phonon degrees of freedom (see Appendix B), we limit
our simulations to a 6 × 6 square lattice in this section, corre-
sponding to the smallest square cluster capable of accommo-
dating the experimentally observed (π/3, 0) momentum.

In Fig. 4(a), we analyze the evolution of charge suscepti-
bilities in the 50% doped Hubbard-Holstein model across all
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FIG. 4. (a) Charge susceptibility as a function of EPC strength at various momenta, simulated using the quarterly filled Hubbard-Holstein
model with U = 8t at T = 0.4t . (b) Doping dependence of charge susceptibilities, simulated using the Hubbard-Holstein model with the EPC
g = t . The colormap in panel (a) is fixed to highlight intensity variations, while it is normalized within each panel of (b) to highlight the relative
distribution. (c) Charge susceptibility at the dominant (π, π ) and the experimentally relevant (π/3, 0).
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momenta as the onsite EPC g varies. Although typical EPC
strengths in cuprate materials are around 0.5t [58], we extend
our simulations up to g = 2t to test the generality of our
conclusions. As expected, increasing g amplifies the overall
χc(q, ω = 0) at all momenta, driven by the direct coupling
to the local electron density. Nevertheless, the peak intensity
consistently appears at large momenta near (π, π ), with no
significant enhancement at (π/3, 0), the momentum relevant
to experimental observations.

We further explore the doping dependence of charge sus-
ceptibility distribution by fixing the coupling strength at g = t .
As shown in Fig. 4(b), even with such a strong EPC, the
phase diagram remains qualitatively unchanged from that of
the pure Hubbard model. The system continues to display a
stripe state below 20% doping, characterized by a peak at
antinodal wave vector. Given the resolution limits of our 6 × 6
cluster, we can only identify the stripe wave vector at (π/3, 0),
while it shifts with doping [24]. However, the primary focus of
this study is in the extremely overdoped regime beyond 30%
doping. In this regime, checkerboard fluctuations at (π, π )
remains dominant, despite the presence of strong EPC. There
is signs of the unidirectional CDW instability throughout the
entire regime. Therefore, the onsite EPC, as considered in the
Hubbard-Holstein model, still cannot account for the exper-
imentally observed overdoped CDW at (π/3, 0). While the
simulations are performed at a relatively high temperature,
this conclusion is further supported by zero-temperature re-
sults discussed later.

Although the inclusion of the onsite EPC does not resolve
the issue of the (π/3, 0) CDW at the extremely overdoped
regime, the doping dependence of charge susceptibilities
peaks near 50% doping [see Fig. 4(c)], consistent with the
experimental observations [29]. As discussed in Sec. III, this
monotonic doping dependence is driven by the strong Hub-
bard interaction, which is not altered by the inclusion of EPC.

B. Charge instability driven by nonlocal coupling

Our analysis of the Hubbard-Holstein model reveals that
the inclusion of onsite EPC within realistic coupling strengths
does not substantially alter the charge susceptibility patterns
observed in the pure Hubbard model. To investigate the origin
of the experimentally observed overdoped CDW, we extend
our model to nonlocal EPCs [59], which are known to stabi-
lize polarons under weak coupling conditions [60–62]. These
couplings have been found essential in explaining the attrac-
tive interactions recently observed in 1D cuprates [45–47].
Considering that electrostatic couplings, like those to apical
oxygens, decay with distance [46], our primary focus is on
the EPC between nearest-neighbor electron density and lat-
tice displacement, labeled as g′ in Eq. (3). Starting with the
quarter-filled Hubbard-Holstein model discussed in Sec. IV A
(g′ = 0), we gradually increase g′ while holding g = 0.5t [see
Fig. 5(a)]. The introduction of nearest-neighbor EPC results
in the emergence of small-momentum charge susceptibility
at the zone center. At the same time, the checkerboard fluc-
tuations at large momenta persist. Once g′ exceeds ∼0.25t ,
the small-wave vector χc at q = (π/3, 0) surpasses the (π, π )
susceptibility in intensity, becoming the dominant wave vector
[see Fig. 5(b)]. This critical coupling strength is slightly above
the estimated value from the octahedral symmetry, where
g′ ∼ g/

√
5 [46], but the Jahn-Teller effect may bring g′ and

g closer in cuprate materials, making the simulated scenario
realistic.

Importantly, the intensities at these key wave vectors
and their doping dependence are resilient to temperature
changes [see Fig. 5(b)], consistent with RXS results [29]. (See
Sec. IV C for a more detailed demonstration of this resilience.)
Furthermore, while these nonlocal EPCs shift the dominant
wave vector, they do not alter the doping dependence of the
charge susceptibility intensities, which remains maximal near
quarter filling (see Appendix D).

FIG. 5. (a) Charge susceptibility for the quarterly filled HEH model (U = 8t and g = 0.5t) with different g′s and T = 0.2t . (b) The
q = (π/3, 0) (blue) and (π, π ) (red) susceptibilities for T = 0.4t (dashed curves) and T = 0.2t (solid curves) as a function of the g′ with
U = 8t .The errorbar is smaller than the symbol. (c) Phonon-mediated effective interaction |Veff (q)| for ω = 0 as a function of g′ at specific
momentum points marked in the inset. (d) The χc(q) obtained by RPA (lower-left) and DQMC (upper-right insets) simulation for the extended-
Holstein model with U = 0 and T = 0.2t . (e) Schematic illustrating that the nonlocal EPC g′ favors longer period charge modulation, while
onsite EPC g favors short period charge modulation.
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The emergence of small-momentum susceptibilities can
be elucidated by analyzing the phonon-mediated effective
interactions between electrons [63]. The nearest-neighbor
coupling g′ modulates the EPC in momentum space, i.e.,
gq = g + 2g′(cos qx + cos qy). When g′ shares the same sign
as g, the coupling is predominantly projected onto small
momenta. As the phonon-mediated dynamical interaction
Veff (q, ω) = g2

q/M(ω2 − ω2
ph) scales with g2

q, this modulation
further affects the charge susceptibility near the zone center,
including the anticipated (π/3, 0) [see Figs. 5(b) and 5(c)].
Simultaneously, the momentum dependence of the attractive
Veff also adjusts the (π, π ) charge instability. As gq=(π,π )

decreases and eventually turns negative with increasing g′,
the Veff ∝ g2

q exhibits a nonmonotonic trend with respect to
g′. Such a nonmonotonic dependence is also reflected in
the evolution of χc[q = (π, π )]. Alternatively, the impact of
nonlocal EPC can be interpreted in the real-space picture.
As shown in Fig. 5(e), the presence of g′ clusters electrons
around individual lattice displacements, transforming short-
range doublon-hole fluctuations into form a longer-range
charge pattern.

The relationship between Veff and small-momentum charge
instabilities suggests an independent origin for these in-
tensities, allowing them to coexist with large-momentum
doublon-hole fluctuations induced by U . These two interac-
tions manifest minimal overlap in momentum space. As a
demonstration, we set Hubbard U to zero in the insets of
Fig. 5(d) and find that the DQMC-simulated charge suscep-
tibility intensifies only near the zone center, with negligible
intensity at (π, π ) compared to that of the HEH model [i.e.,
Fig. 5(a)]. These small-momentum susceptibilities are consis-
tent in models with and without U when the EPC strength
is the same. The Hubbard U plays the role of determining
the overall charge susceptibility and its doping dependence,
necessary for achieving a maximum at 50% doping.

While the dominant wave vector for charge susceptibility
has reached the experimentally observed (π/3, 0) in Fig. 5(a),
we caution against over-interpreting the quantitative value of
this wave vector, given that it represents the smallest nonzero
wave vector in the 6 × 6 square lattice. As discussed in
Appendix C, simulations of larger systems, albeit at higher
temperatures, suggest a dominant wave vector shifting closer
to (0,0). Moreover, the phonon-mediated |Veff | is unlikely
to peak at nonzero wave vectors if only positive onsite and
nearest-neighbor couplings (g and g′) are considered. This
limitation necessitates the exploration of a parameter regime
incorporating longer-range couplings, such as g′′, g′′′, and g′′′′)
in Eq. (3). These extended couplings, which originate from
the electrostatic nature of the site-phonon interactions, signif-
icantly modulate the momentum-space EPC gq, thus shaping
the small-momentum charge distributions more precisely.

To quickly estimate phonon-induced CDW orders without
system-size limitation, we utilize the random phase approx-
imation (RPA) to map the momentum distribution of χc(q),
employing Veff (q, ω) as the interaction vertex. This method
proves effective, as shown by comparing the RPA (major
parts) and DQMC (insets) in Fig. 5(c). The RPA successfully
captures small-momentum instabilities in systems with U =
8t , as the EPC and electronic interactions determine small-
and large-momentum susceptibilities almost independently.

0

0 /2- /2 0
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qx in (H,0)

(a) (b) (c)
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FIG. 6. (a) Effective dynamical interaction |Veff (q, ω = 0)| me-
diated by phonons with longer-range couplings (g′ = 0.55g, g′′ =
−0.1g, g′′′ = g′′/

√
2, g′′′′ = g′′/2). (b) DQMC-simulated charge sus-

ceptibility χc for quarterly filled HEM (U = 8t and g = 0.5t)
obtained at T = 0.25t . (c) Comparison of the background-removed
RXS results at 31 K obtained adapted from Ref. [29] (gray peak), the
simulated charge susceptibility for the Hubbard model (green), and
that for the HEH model (blue) along the antinodal direction.

Due to the screening effects at long distances, we slightly
relax the assumption that EPC decays strictly as 1/r and
instead adopt the parameters in Fig. 6, where |Veff (q, ω =
0)| peaks at (π/3, 0). Using this parameter set, we simulate
χc using DQMC. As expected, the charge wave vector is
precisely pinned at (π/3, 0) for 12 × 12 systems, validating
the potential of inducing a robust, experimentally consistent
charge order through long-range EPC. While these couplings
are tied to materials’ crystal and electronic structure, slight
deviations from this commensurate wave vector may be
mitigated by domain boundaries and disorders in real mate-
rials [18]. Our simulation ignores the long-range electronic
Coulomb repulsion, which typically contributes an additional
∼1/|q|2 interaction as its bare form. However, the single-band
Hubbard model already incorporates corrections from these
Coulomb interactions during the projection from its multiband
prototype [64,65]. As a result, the effective single-band wave
function combines the copper and oxygen components [31],
where the in-plane Coulomb interaction is largely screened by
the copper-oxygen covalent bond in the extremely overdoped
regime. Such a screening is more severe in the overdoped
regime with a large Fermi surface.

C. Temperature dependence

The fermion sign problem in DQMC limits our ability
to simulate at low temperatures comparable to experimental
conditions (below 300 K). To extrapolate the potential impact
of temperature, we analyze how susceptibilities change at
higher temperatures. Figure 7(a) presents the results using
the same model parameters as in Fig. 6, but at elevated tem-
peratures. The (π/3, 0) peak in χc is consistently observed
throughout all temperatures studied. This behavior becomes
more apparent when susceptibilities at different temperatures
are normalized to the intensity at the zone center q = (0, 0),
as shown in Fig. 7(b). While the relative peak height dimin-
ishes as temperature increases, the peak’s position remains
unchanged. Although this observation does not definitively
prove that this charge order persists at low temperatures
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FIG. 7. (a) Charge susceptibility and (b) normalized suscepti-
bility relative to χ (0, 0) along the (H, 0) direction for different
temperatures. All model parameters are identical to those in Fig. 6.
The triangles mark the wave vector observed in experiment [29].
Due to significant particle number fluctuations, the q = (0, 0) charge
susceptibility at T = 0.25t is extrapolated. Error bars in panel (b) are
not shown.

beyond the DQMC’s reach, it does provide strong indirect evi-
dence that the charge order is resilient to temperature changes.

To further validate our results at extremely low temper-
atures comparable to experimental conditions, we leverage
the non-Gaussian exact diagonalization (NGSED) method,
a zero-temperature technique, to simulate the HEH models.
NGSED is a variational approach built upon exact diagonal-
ization (ED), designed to address systems with both strong
electronic correlations and EPCs. Generally, any electron-
phonon wave function can be decomposed as

|
〉 = UNGS({λq})|ψph〉 ⊗ |ψe〉. (7)

Here, the electron-phonon entanglement is encapsulated by
the non-Gaussian transformation UNGS = eiS[c†,c,a†,a], where
S is a polynomial involving at least two electronic creation
and annihilation operators and at least one phonon opera-
tor. While this method approaches exactness as the order
in S increases, previous numerical benchmarks using ED
and DQMC on small clusters have shown that truncating to
the lowest-order terms is sufficient for site-phonons [66,67].
Thus, the non-Gaussian transformation reduces to a general-
ized polaronic transformation:

UNGS({λq}) ≈ ei− 1√
N

∑
qi λqeiq·ri (aq−a†

−q )ni , (8)

where ρq = ∑
i nie−iq·ri denotes the momentum-space elec-

tron density, and pq = ∑
i Pie−iq·ri/

√
N represents the phonon

momentum operator. Within the wave-function ansatz de-
scribed in Eq. (7), the ground-state solution is determined
by minimizing the total energy in the variational parameter
space spanned by {λq}, |ψph〉, and |ψe〉. The NGSED method
self-consistently optimizes the variational parameters and the
individual states, converging to the ground state [66]. Due
to the complexity of evaluating excited states within this
self-consistent framework, we restrict our focus to the static
(equal-time) charge structure factor Nq in the NGSED simu-
lation, using it as a metric for the charge instability.

0 0.2 0.4 0.6 0 0.2 0.4 0.6
doping doping

N
q

0

0.5

1
(a) g = 0.25t

(c) g = 0.25t, g’ = 0.1t

(b) g = 0.5t

(d) g = 0.5t, 
      g’ = 0.2t

0.8

N
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1.5
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(2 ,0)

(2 ,2 )

(0,0)

(0,2 )

FIG. 8. Static charge structure factor Nq in the HEH model for
momenta accessible in a 4 × 4 cluster, simulated using NGSED. The
model parameters used are U = 8t , t ′ = −0.15t , and (a) g = 0.25t ,
(b) g = 0.5t , (c) g = 0.25t , g′ = 0.1t , and (d) g = 0.5t , g′ = 0.2t .

As shown in Fig. 8, in the Hubbard-Holstein model with
no or minimal g′, (π, π ) dominates over other momenta at
zero temperature. However, as g′ is increased to 0.2t , there
is a notable enhancement in charge correlation at (π/2, 0),
with this enhancement peaking at 50% doping. It should be
noted that due to the constraints of a finite-size cluster (a 4 × 4
square lattice here), the NGSED simulation is unable to reach
the expected (π/3, 0) momentum, leaving (π/2, 0) as the
closest momentum point accessible. Nevertheless, the distinct
behavior with and without g′, are consistent with our DQMC
results discussed above, suggesting that the conclusions drawn
the EPC vertex are robust even at zero temperature.

D. Impact of phonon frequencies and band structure

The constraints of DQMC simulations, particularly the se-
vere autocorrelation issues caused by low-frequency phonons,
necessitated our choice of a phonon frequency ωph = t for
the results discussed above. However, realistic phonon fre-
quencies in cuprates can be as low as 60–70 meV [68,69],
suggesting that ωph ∼ 0.2t is more appropriate for LSCO.
Despite adopting a higher phonon frequency, our findings sug-
gest that the wave vector of the extremely overdoped charge
order near the Brillouin zone center is primarily determined
by the momentum distribution of the effective EPC vertex
g2

q/ω
2
ph. This conclusion is supported by both our DQMC sim-

ulations and comparisons with RPA in Sec. IV A. Therefore,
when phonons are optical with minimal frequency depen-
dence (i.e., ωq ≈ ωph), the influence of phonon frequency on
the relative distribution of charge susceptibility in momentum
space is largely quantitative rather than qualitative.

To demonstrate this, we simulate χ (q, ω = 0) for various
phonon frequencies at a high temperature of T = 1t . When
the EPC gq is kept constant, decreasing ωph leads to a uniform
increase in the (π/3, 0) susceptibility, driven by the enhanced
vertex [see Fig. 9(a)]. This simple scaling behavior of the
phonon frequency is further demonstrated by fixing the ra-
tio gq/ωph while varying ωph, thereby preserving the vertex
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FIG. 9. (a), (b) Dependence of charge susceptibilities on phonon
frequency by fixing (a) all EPC strengths g, g′, etc., and (b) the ratio
g/ωph. (c) Dependence of the charge susceptibility on the band struc-
ture in the quarter-filled HEH model. All other model parameters
are identical to those in Fig. 6 and the temperature is T = 0.5t . The
triangles mark the wave vector observed in experiment [29].

amplitude g2
q/ω

2
ph. As shown in Fig. 9(b), the susceptibility

distribution remains largely unaffected across different fre-
quencies. Therefore, employing a single phonon frequency
ωph = t in most simulations is sufficient to identify the domi-
nant wave vector and relative susceptibility distribution.

In addition to the phonon frequency, the electronic band
structure is a crucial factor that can significantly influence
collective excitations by modifying the electronic Fermi sur-
face shape, a characteristic that varies across different cuprate
materials. As discussed in Sec. II, this band structure is pa-
rameterized by the next-nearest-neighbor hopping t ′. To test
the robustness of our conclusions across a wider range of
cuprate materials, we slightly adjust t ′ from the accepted
LSCO value of t ′ = −0.15t , while keeping all other parame-
ters the same as in Fig. 6. As shown in Fig. 9(c), this variation
of t ′ within ±0.05t leads to an approximate 5% change
in the overall charge susceptibilities. However, despite this
quantitative scaling, the dominant wave vector consistently
remains at (π/3, 0), reflecting the robustness of this extremely
overdoped charge order against the changes in specific band
parameters when nonlocal EPCs are present. These results
further support the generality of our conclusions regarding
the EPC-vertex-determined charge order across the various
cuprate materials, consistent with the observed experimental
signatures observed in both LSCO and Bi2201 [28,29].

V. POTENTIAL CONTRIBUTIONS FROM BOND PHONONS

In the previous sections, we concentrated on site-phonons
that couple to electronic density, as described by the Hamil-
tonians expressed in Eqs. (2) and (3). However, in cuprate
materials, electrons also couple to bond phonons, where the
coupling matrix elements are dependent on the electronic
momentum. To extend our analysis, we investigate various
bond phonons and their impacts on charge instabilities in the
extremely overdoped regime. The electron-phonon coupled
part of Hamiltonian for a general Fröhlich EPC system is

He−ph =
∑
k,q,σ

gkq√
N

c†
k−qσ ck,σ (a†

q + a−q) + ωph

∑
q

a†
qaq. (9)
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0
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FIG. 10. (a) Schematics illustrating bond-phonon modes in the
cuprates. (b) The RPA charge susceptibility χRPA(q) for each phonon
mode. (c) The difference in charge susceptibility from the Lind-
hard response, revealing phonon-induced instabilities. Simulations
are performed on a 50% doped 128 × 128 square lattice at T = 0.1t .

Building upon the conclusions from Sec. IV, we focus on their
influence on the EPC vertex within the RPA framework, under
the assumption that large-momentum checkerboard fluctu-
ations induced by electronic correlations do not affect the
zone-center charge susceptibility in the extremely overdoped
regime. In this framework, the charge susceptibility is given
by

χ (p, iωp; q, iωq ) = χ0(p, iωp; q, iωq)

1 − P(p, iωp; q, iωq )
, (10)

where χ0 denotes the bare susceptibility of noninteracting
electrons, and

P(p, iωp; q, iωq ) =
∑

k

gkqgp,−qωph

N
(
ω2

q + ω2
ph

) nF (εp) − nF (εp+q)

iωq + εp − εp+q
.

(11)

Here, spin indices are omitted, and nF represents the Fermi-
Dirac distribution. Finally, the charge susceptibility is calcu-
lated as χ (q, iωq) = ∑

p,ωp
χ (p, iωp; q, iωq )/βN . Consistent

with previous discussions, we focus on the zero-frequency
charge susceptibility χ (q, ω = 0), which acts as a fingerprint
for charge order.

We examine several significant types of bond phonons in
cuprates by projecting their couplings onto the Zhang-Rice
singlet electronic wave functions [70]. As shown in Fig. 10,
the breathing phonon predominantly enhances charge sus-
ceptibility near the Fermi momentum, while the A1g phonon
primarily induces charge instability around the � point. The
apical phonon, however, generates a broad range of fluctua-
tions along the nodal direction. Interestingly, the B1g phonon
leads to susceptibilities in the antinodal direction and may
contribute to the (π/3, 0) charge order observed in extremely
overdoped LSCO, albeit with a slightly different wave vector.
The B1g phonon has been shown to support d-wave super-
conductivity in cuprates [69–71]. The impact of these bond
phonons on superconductivity, particularly in the extremely
overdoped regime, is beyond the scope of this paper but
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warrants further study, particularly in understanding the role
of the extremely overdoped CDW in high-Tc systems.

VI. SUMMARY AND OUTLOOK

In conclusion, we have conducted a thorough investigation
of the charge instabilities in the extremely overdoped cuprates,
utilizing the Hubbard model and its extensions with phonons.
Excluding Fermi-surface instability, the extremely overdoped
Hubbard model successfully captures the nonmonotonic dop-
ing dependence of the experimentally identified period-6
CDW, reflecting the persistence of remnant correlations even
in the overdoped regime. However, the limitations of the
Hubbard model and the Hubbard-Holstein model with lo-
cal EPCs become evident when attempting to address the
(π/3, 0) wave vector, as local particle-hole fluctuations at
(π, π ) dominate. By introducing nonlocal EPCs, with cou-
pling strengths determined by geometric relations, we have
provided an explanation for the period-6 CDW in extremely
overdoped cuprates. Crucially, this phonon-induced CDW is
shown to be robust against variations in temperature and
specific model parameters. The phonon-mediated effective
interaction pins the CDW at (π/3, 0) across a wide range of
doping levels, consistent with RXS experiments.

Since the extremely overdoped regime is well-separated
from the pseudogap and AFM phases, where spin fluctuations
dominate, the phonon-driven nature of the CDW suggests a
subleading interaction in cuprates. This interaction is over-
whelmed by the Hubbard U in underdoped and optimally
doped cuprates, as detailed in this paper. However, recent
studies increasingly indicate that phonons, alongside strong
correlations, contribute significantly to d-wave superconduc-
tivity [52,54,69,72,73]. In the overdoped regime, where the
impact of correlations is separable, the EPC identified here
is crucial for the theory of understanding unconventional su-
perconductivity, particularly given its BCS-like nature at the
emergence from the overdoped side [69].
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APPENDIX A: DETAILS ABOUT THE DOPING
DEPENDENCE IN THE HUBBARD MODEL

In addition to the false-color representation in Fig. 2 of
the main text, we present here the antinodal and nodal cuts
of the charge susceptibility for hole-doped Hubbard models
and analyze the detailed evolution of these features with dop-
ing. As shown in Figs. 11(a) and 11(b), the system exhibits
AFM at half-filling, with the subleading charge instability of
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FIG. 11. (a), (b) Charge susceptibilities along the (a) (H, 0) and
(b) (H, H ) directions for the Hubbard model with t ′ = −0.15t , U =
8t , across different doping levels at T = 0.4t . (c) Dominant wave
vectors along the (H, 0) direction within the stripe regime, fitted
through the multi-Lorentzian functions.

doublon-hole fluctuations centered at (π, π ) [38]. As doping
increases, stripe order emerges, shifting the dominant wave
vector closer to the zone center. The fluctuating nature of the
stripes causes significant momentum broadening, resulting in
a greater spread of the charge susceptibility peaks compared
to their separation. To identify the precise wave vector, we fit
the susceptibility data using C4-symmetric multi-Lorentzian
functions, following Ref. [74]. The fitted wave vectors are
shown in Fig. 11(c). This fitting procedure works well for
identifying stripes in the 5%–20% hole doping range, indicat-
ing the presence of stripes in the Hubbard model, but becomes
less effective beyond this regime.

Beyond 25% doping, the state deviates significantly from
the stripe states that smoothly evolve with increasing doping.
This divergence is primarily indicated by a rapid increase in
susceptibility near (π, π ), which overwhelms the instabilities
in the antinodal direction and reflects a shift towards checker-
board fluctuations. In the extremely overdoped regime, these
checkerboard fluctuations dominate over the entire Brillouin
zone. This phenomenon can be attributed to two main reasons.
First, the Fermi surface geometry in the extremely overdoped
regime naturally favors charge instability at large momenta
near (π, π ), as shown by the Lindhard response function for
noninteracting electrons in Fig. 12. Second, residual correla-
tions within the system lead to doublon-hole fluctuations that
further reinforce the (π, π ) charge fluctuations. The combina-
tion of these influences results in the observed dominance of
(π, π ) excitations, while the (π/3, 0) charge order—observed
experimentally in Ref. [29]—is notably absent in the ex-
tremely overdoped Hubbard model.
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FIG. 12. Charge susceptibilities calculated from the Lindhard re-
sponse functions for noninteracting electrons at 30% hole doping and
temperatures T = 0.1t , 0.2t , and t , respectively. The band structure
parameters are identical to those used in Fig. 2, i.e., t ′ = −0.15t .
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FIG. 13. (a), (b) Doping dependence of charge susceptibilities,
along the (a) (H, 0) and (b) (H, π ) direction, obtained from the
Hubbard model on a 12 × 4 rectangular lattice at T = 0.25t . The
model parameters are chosen as U = 6t and t ′ = −0.25t , following
Ref. [74]. (c) Doping dependence of the CDW wave vectors along
the (H, 0) (blue) or (H, π ) (red) directions, derived from double-
Lorentzian fitting. The gray dashed curve highlights the linear doping
dependence in the stripe phase, with all the three regimes labeled on
the top bar. (d) Doping dependence of the charge susceptibilities at
(π, π ), the (π, 0), and the experimentally observed (π/3, 0).

To further demonstrate the above doping dependence at a
lower temperature (T = 0.25t), we switch to a 12 × 4 rect-
angular lattice, which is smaller than the 12 × 12 square
lattice used previously. This geometry naturally breaks the C4

symmetry, providing a clearer visualization of the symmetry-
breaking stripe state [see Figs. 13(a) and 13(b)]. Despite the
use of slightly different model parameters, the doping depen-
dence of the charge instability remains consistent with the
underlying phases presented in Figs. 2 and 11. Shortly after
doping, the system exhibits unidirectional stripe order along
the antinodal direction. As shown in Fig. 13(c), the dominant
wave vector qx increases linearly with doping within the stripe
regime. However, in the extremely overdoped regime beyond
30% doping, the stripe charge fluctuation is then replaced by
checkerboard charge fluctuations near (π, π ).

Notably, the overall charge susceptibility increases with
doping reaching its peak at approximately 50% doping for
both square and rectangular lattices. As elaborated in the
main text, this peak emerges due to the suppression of charge
fluctuations at both ends of the doping axis. At half-filling,
the Mott insulating phase, driven by strong electronic corre-
lations, minimizes double occupation and suppresses charge
fluctuations. However, in the extreme hole-doped regime,
where the band is nearly empty, the total charge suscepti-
bility diminishes. Thus, the charge susceptibility reaches its
maximum at the midpoint of the doping axis, around 50%
doping. This doping dependence is observed in χ (q) across
all momenta, though the precise peak doping level may vary
between 45% to 55%, depending on the specific q and model
parameters like U/t . Therefore, the fact that experimentally
observed susceptibility peak near 50% suggests that strong
correlations continue to play a significant role even in the
extremely overdoped regime of cuprates.
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FIG. 14. (a) Average signs during DQMC simulations for the
quarter-filling HEH model on a 12 × 12 square lattice across dif-
ferent temperatures, using parameters identical to Fig. 6. (b) Phonon
autocorrelation function at T = 0.5t , with an exponential fit shown
by the red line. (c) The phonon mean displacement and second- and
fourth-order momentum statistical data over 1000 sweeps from 10
processes, showing fluctuation around equilibrium value.

From the detailed analysis in this Appendix, it becomes ev-
ident that the charge susceptibility in the extremely overdoped
Hubbard model is dominated by a (π, π ) instability on both
square and rectangular lattices. While these models effectively
capture the overall doping dependence of charge susceptibil-
ity, their specific momentum distributions do not align with
experimental observations. This discrepancy substantiates the
conclusion drawn in Sec. III of the main text, affirming that
the pure Hubbard model is insufficient to explain the experi-
mentally observed overdoped charge order.

APPENDIX B: FERMION SIGNS
AND AUTOCORRELATIONS IN DQMC

FOR THE ELECTRON-PHONON SYSTEMS

The common challenge in all DQMC simulations is the
fermion sign problem, which limits the lowest tempera-
ture that can be explored in simulations of systems lacking
particle-hole symmetry. A small average sign is typically
indicative of very low sampling efficiency, making simula-
tions more computationally demanding. As summarized in
Fig. 14(a), for the 50% doped HEH model in a 12 × 12 square
lattice, with parameters, U = 8t , t ′ = −0.15t , and T = 0.25t
(same parameters as Fig. 6 of the main text), the average
sign is around 0.05, which is comparable to the average sign
in the Hubbard model (0.06) under the same doping and
temperature conditions. While the inclusion of phonons and
relatively strong couplings does not significantly worsen the
fermion sign, it substantially increases computational cost
through another factor—the autocorrelation length. In our
simulations, the Hubbard-Stratonovich fields for electrons are
binary, whereas the phonon fields (i.e., displacements) are
continuous real numbers. This results in a much longer au-
tocorrelation length for the phonon fields compared to the
electronic auxiliary fields [see Fig. 14(b)], the latter usually
requiring fewer than 10 sweeps. As temperatures decrease,
the rapidly diverging autocorrelation length of the phonon
fields makes reliable Monte Carlo sampling and achieving
equilibrium states increasingly time-consuming.

To ensure the statistical reliability of the results pre-
sented, we initiate our simulations with a series of extensive
preheating sweeps, starting from a random configuration
where phonon displacements were distributed according to a
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FIG. 15. Left: Charge susceptibility for the HEH model with
g = 0.5t and g′ = 0.2t , simulated on a 12 × 12 cluster at T = 0.4t .
The remaining parameters are identical to those in Fig. 5(a) of the
main text. Right: Momentum-space distribution of the EPC-mediated
effective interaction.

Gaussian. Throughout this preheating phase, we monitor key
statistical metrics such as the average displacement and its
second and fourth-order moments to ascertain when the sys-
tem reaches thermal equilibrium. For example, as shown in
Fig. 14(c), these metrics converge after a sufficient number of
preheating sweeps, confirming that the system has stabilized
in a thermal equilibrium state. Following this, we estimate the
autocorrelation length by fitting the autocorrelation function
to the exponential decay model f (t ) = exp(−t/L). With the
extracted autocorrelation length L, we conduct our measure-
ments at intervals of L sweeps to ensure statistically unbiased
sampling. In the occasional scenario where the exponential
fitting function does not fit the data well, we adjust the num-
ber of sweeps according to the first time point at which the
autocorrelation falls below 1/e. This strategy ensures that our
DQMC simulations accurately capture the thermal equilib-
rium properties of the system without bias.

APPENDIX C: FINITE-SIZE ANALYSIS OF THE HEH
MODEL WITH ONLY g AND g′ COUPLINGS

Figure 5(a) in the main text demonstrates an increase in
the charge susceptibility at the (π/3, 0) with rising g′ on a
6 × 6 cluster. To avoid confusion, we clarify that, under the
parameters used, this peak signals the emergence of instabili-
ties near the zone center but does not precisely determine the
wave vector due to the finite system size. To further illustrate
this, we repeat the simulation of Fig. 5(a) on a 12 × 12 cluster,
albeit at a higher temperature (T = 0.4t) due to the computa-
tional constraints. As shown in the left panel of Fig. 15, the
dominant wave vector shifts closer to (π/12, 0) instead of
(π/3, 0) in this enlarged system. This shift indicates that the
charge instability is expected to be dominated by a smaller
wave vector near the � point in the thermodynamic limit,
instead of being pinned at (π/3, 0). It is also suggested by
the EPC vertex distribution shown in right panel of Fig. 15.

Thus, this finite-size analysis shows that the HEH model
with only g and g′ does not precisely stabilize the overdoped
CDW at (π/3, 0), though it does induce significant fluctua-
tions near the zone center. By comparing DQMC and RPA
results in Fig. 5 of the main text, it becomes clear that the or-
dering wave vector is primarily determined by the distribution
of the EPC vertex. This insight leads us to introduce additional
nonlocal EPC interactions into the HEH model, ultimately
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FIG. 16. The doping dependence of charge susceptibilities sim-
ulated using the HEH model on a 6 × 6 cluster with g = 0.5t and
g′ = 0.3t at T = 0.4t . The band structure and Hubbard interactions
are identical to those in Fig. 5. The last panel presents the evolution
of susceptibility at (π, π ) and (π/3, 0). Error bars are smaller than
the symbol sizes.

achieving the precise (π/3, 0) order observed in Fig. 6 of
the main text, consistent with experimental observations. This
progression from qualitative to quantitative analysis provides
a more comprehensive explanation for the overdoped CDW
phenomenon.

APPENDIX D: DETAILS ABOUT THE DOPING
DEPENDENCE IN THE HEH MODEL

In Fig. 5 of the main text, we have demonstrated that
the next-nearest-neighbor EPC suppresses the checkerboard
charge fluctuations at (π, π ) while enhancing charge fluctua-
tions near the zone center at 50% doping. To provide a more
comprehensive understanding of this trend, we present the full
doping dependence of charge susceptibility in Fig. 16, using
the next-nearest-neighbor coupling strength g′ = 0.3t . Due
to computational complexity, these additional simulations are
performed at a higher temperature T = 0.4t . Notably, the en-
hancement in the zone center charge instability persists across
the entire extremely doped regime. At the examined coupling
strength, this zone center instability clearly dominates over the
checkerboard (π, π ) instability.

The maximization of charge susceptibilities near quarter
doping, as discussed in Sec. III, results from strong electronic
correlations. This trend remains consistent across models,
from the Hubbard model to the HEH model with EPCs, as
both the coupling strength itself gq and the EPC vertex g2

q/ω
2
ph

are significantly weaker than the Hubbard U , leaving the spin-
dominant physics near half-filling unaffected. Consequently,
the charge susceptibility at (π, π ) continues to peak at 50%
doping, whereas the zone center susceptibility, which turns to
dominate in the HEH model, peaks at 55%. While the intro-
duction of EPCs does not alter the overall doping dependence
discussed in the context of the Hubbard model, it redistributes
susceptibility across different momenta. This doping depen-
dence distinguishes our HEH model simulations, where the
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FIG. 17. The average density n as a function of chemical poten-
tial μ for (a) the Hubbard model [parameters identical to Fig. 2 of
the main text], (b) the HEH model with parameters g = 0.5t and
g′ = 0.3t [Fig. 5 of the main text], and (c) the HEH model with
longer-range EPCs [Fig. 6 of the main text], respectively. Error bars
are smaller than the symbol sizes.

Hubbard U remains the dominant energy scale, from previous
studies on phonon-only models [60–62]. In those phonon-only
models, the charge susceptibility consistently peaks near half
filling, contrary to experimental observations.

APPENDIX E: ABSENCE OF PHASE SEPARATION
IN ALL INVESTIGATED MODELS

In systems where strong EPC mediates an attractive in-
teraction, potential phase separation may occur due to the

instability of particle numbers. To confirm the absence of
phase separation in the models investigated here, we analyze
the evolution of the average density n as a function of the
chemical potential μ [see Fig. 17]. A key indicator of phase
separation is a discontinuity in the n − μ curve. However, for
the Hubbard model, the continuous n − μ curve confirms the
absence of phase separation, aligning with prior numerical
studies [22,26,34]. The inclusion of phonons with the relevant
couplings does not alter this outcome, as the n-μ relationship
remains continuous across the coupling strengths considered
[see Fig. 17(b)]. This observation holds true for all HEH
models examined in this study, with different g, g′, and other
nonlocal interactions [see the example in Fig. 17(c)]. There-
fore, phase separation is conclusively absent in the models
relevant to our investigation.

The stability observed in our models largely stems from the
strong Hubbard interaction U = 8t . This repulsive interaction
dominates the energy landscape of the system and effec-
tively prevents the phase separation that might be induced
by attractive phonon-mediated interactions. It is generally
recognized that for phase separation to occur, the attractive
interaction must reach approximately half the magnitude of
the Hubbard U [75,76]. Our study confirms that, while the
phonon-mediated attractive V is significant, it does not exceed
this critical threshold set by U . This observation further high-
lights the importance of incorporating the strong electronic
correlation in the study of phonons.
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