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ABSTRACT In-vehicle controller area network (CAN) is susceptible to various cyberattacks due to its
broadcast-based communication nature. An attacker can inject falsemessages to a vehicle’s CANviawireless
communication, the infotainment system, or the onboard diagnostic port. Thus, an effective intrusion detec-
tion system is essential to distinguish authentic CAN messages from false ones. In this study, we developed
a hybrid quantum-classical CAN intrusion detection framework using a classical neural network (NN) and
a quantum restricted Boltzmann machine (RBM). The classical NN is dedicated to feature extraction from
CAN images generated from a vehicle’s CAN bus data. In contrast, the quantum RBM is dedicated to CAN
image reconstruction for classification-based intrusion detection. The novelty of the study lies in utilizing
the generative ability of an RBM to reconstruct the pixels in a CAN image, a portion of which is dedicated
to labeling. Then, that portion of the reconstructed image is used to classify the image as an attack image
or a normal image. To evaluate the performance of the hybrid quantum-classical CAN intrusion detection
framework, we used a real-world CAN fuzzy attack dataset to create three separate attack datasets, where
each dataset represents a unique set of features related to the vehicle. We compared the performance of our
hybrid framework to a similar but classical-only framework. Our analyses showed that the hybrid framework
performs better in CAN intrusion detection compared to the classical-only framework. For the three datasets
considered in this study, the best models in the hybrid framework achieved 97.5%, 97%, and 98.3% intrusion
detection accuracies and 94.7%, 93.9%, and 97.2% recalls, respectively. In contrast, the best models in the
classical-only framework achieved 92.5%, 95%, and 93.3% intrusion detection accuracies and 84.2%, 89.8%,
and 88.9% recalls, respectively.

INDEX TERMS Controller area network, cyberattack detection, intrusion detection, quantum artificial
intelligence, restricted Boltzmann machine, generative artificial intelligence.
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I. INTRODUCTION
A. BACKGROUND AND MOTIVATION
Controller area network (CAN) is a de facto standard for the
broadcast-based in-vehicle message communication system
to provide a dedicated, reliable, and efficient communication
channel for all in-vehicle connected electronic control units
or ECUs, sensors, and systems. Although CAN is widely
popular among in-vehicle networks, it lacks common security
features, such as authentication. Attackers can easily inject
false messages to a vehicle’s CAN via the onboard diagnostic
(OBD-II) port, the infotainment system, or wireless commu-
nication. Thus, different CAN intrusion detection systems
(IDSs) have been widely studied in recent years due to the
inherent vulnerabilities of CAN communication to cyberat-
tacks [1], [2], [3]. Researchers presented various IDSs based
on different machine learning (ML) and deep learning (DL)
techniques [4], [5], [6], [7], [8]. In addition to the variation
in ML or DL techniques, different features and their combi-
nations have been attempted by researchers to improve CAN
intrusion detection accuracy. Some common features used in
the existing studies include message timing (e.g., message
frequency/rate and interval) [9], signatures (e.g., ID, time
interval, and correlation) [10], and anomaly [4].

Beyond the classical computer-based CAN IDSs, quantum
computing can be used for CAN intrusion detection to detect
the increasing number of cyberattacks. Dong et al. [11] pre-
sented a quantum beetle swarm optimization-based extreme
learning machine or ELM (i.e., a neural network where ran-
domly selected input weights and hidden layer biases are
utilized for faster learning) for network intrusion detection.
The ELM in [11] provided higher detection accuracy and
faster convergence than several other classical IDSs, such as
backpropagation, support vector machine, improved rough
ELM, particle swarm optimization, and genetic algorithm
optimization-based ELM models. Chen et al. [12] applied
quantum computing for k-means clustering combined with a
quantum-inspired ant lion optimization algorithm for intru-
sion detection. Their approach [12] improved the conver-
gence of k-means clustering to the global optimal solu-
tion. Caivano et al. [13] presented a quantum annealing or
QA-based IDS for CAN that achieved a similar detection
accuracy for denial of service and fuzzy attacks as a classical
classification technique with significantly shorter training
and prediction time.

This study presents a hybrid quantum-classical CAN
intrusion detection framework that utilizes a classical com-
puter for data preprocessing to generate CAN images with
embedded labels and a quantum computer for restricted
Boltzmann machine or RBM-based CAN image reconstruc-
tion and classification technique to detect CAN intrusions.
RBM is a widely used energy-based generative stochas-
tic neural network (NN) model. The training process of
an RBM can be done using algorithms such as contrastive
divergence (CD) [14] and quantum annealing (QA) [15].
QA provides more accurate gradient estimates for training

RBM models compared to CD-based training for prob-
lems with high energy gaps between modes, as shown
by Korenkevych et al. [16]. Dixit et al. [17] trained an RBM
model using the D-Wave 2000Q QA machine with 64 visible
and 64 hidden units, a task difficult to achieve using a gate-
based approach. Such QA-based training can also be utilized
for training RBMmodels to detect intrusions in an in-vehicle
CAN, which is the motivation for this study.

B. CONTRIBUTION
In a transportation cyber-physical systems environment, clas-
sical and quantum computers can be used together in a
hybrid fashion for CAN intrusion detection. For exam-
ple, Islam et al. [18] presented a hybrid quantum-classical
NN-based framework for CAN intrusion detection that
outperformed both the classical-only and quantum-only
approaches by overcoming the limitations of each of them.
However, to the best of our knowledge, a hybrid approach
of a classical NN and a quantum RBM has not been under-
taken for CAN intrusion detection yet. In addition, exist-
ing studies on NN-based CAN IDSs, including generative
NN-based CAN IDSs, do not consider embedding labels
directly into the corresponding CAN images to leverage the
image generation capability of generative NNs for an image
classification-based CAN IDS. Utilizing QA-based training
of an RBM, which enables sampling from the original prob-
ability distribution of the model, our CAN image (embedded
with dedicated labeling pixels) reconstruction-based CAN
intrusion detection framework offers more efficient learning
(i.e., faster convergence with a high detection accuracy) com-
pared to the existing generative NN-based CAN IDSs. Thus,
this study contributes to the current body of CAN IDS litera-
ture by presenting a hybrid quantum-classical framework for
CAN intrusion detection that leverages the image generation
capability of generative NNs.We utilize the image generation
capability by reconstructing the embedded labels in CAN
images, which is then used for image classification-based
CAN intrusion detection.

The rest of the paper is organized as follows: Section II
provides preliminary information regarding CAN protocol
and CAN frame structure; Section III presents a review of the
existing studies related to generative NN-based CAN intru-
sion detection; Section IV presents the details of the hybrid
quantum-classical CAN intrusion detection framework devel-
oped in this study, including classical computer-based CAN
data preprocessing for CAN image generation and quantum
RBM-based CAN image reconstruction and binary classifi-
cation; Section V presents the evaluation method, including
the details of the CAN datasets used for evaluation, the
CAN intrusion detection process, and the evaluation metrics;
Section VI presents the evaluation results; and Section VII
presents the conclusions.

II. CAN PROTOCOL AND STRUCTURE
CAN is a broadcast-based messaging system in which mes-
sages are broadcast to the CAN bus nodes. Vehicle CAN
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utilizes the Carrier-Sense Multiple Access protocol with
Collision Detection and Arbitration on Message Priority
(CSMA/CD+AMP) that enables transmitting nodes detect
collisions. This collision occurs due to simultaneous trans-
mission of multiple messages. A filter at each node selects the
CAN messages to be broadcast based on the CAN arbitration
identifiers (IDs). The arbitration ID gives the broadcasting
priority of a CAN message.

Fig. 1 shows the standard structure of a CAN frame, which
includes seven fields, i.e., Start of Frame (SOF), arbitration,
control, data, Cyclic Redundancy Code (CRC), acknowledg-
ment (ACK), and End of Frame (EOF) fields. The SOF field
includes a single dominant bit representing the start of trans-
mission of a CAN frame. The arbitration field contains 11 bits
dedicated to the arbitration ID and a single bit dedicated
to Remote Transmission Request (RTR). The arbitration ID
is used to determine the broadcasting priority of the frame,
whereas the RTR varies based on the type of the frame. Six
bits are dedicated to the control field among which the first
two bits are reserved for future use and the remaining four bits
indicate the Data Length Code (DLC), i.e., the length of the
data field. From zero to a maximum of 64 bits are dedicated
to the data field representing the actual data or payload. The
CRC field (containing 16 bits) helps check the integrity of the
message, and the ACK (containing two bits) is reserved for
acknowledgment of a message received earlier. Finally, the
EOF field denotes the termination of the frame and consists
of seven bits.

III. RELATED WORK
CAN intrusion detection is widely studied by researchers
in the recent years because of the inherent vulnerabili-
ties of CAN communication due to its broadcast-based
nature. As a result, the existing body of literature is quite
vast and there are also several surveys on CAN IDSs [2],
[3], [19], [20], [21], [22]. Since we developed a hybrid
quantum-classical framework that utilizes a generative NN,
we explicitly focus on reviewing studies that used genera-
tive NN models for CAN intrusion detection in this section.
The studies reviewed here are presented in chronological
order.

Seo et al. [23] developed a generative adversarial net-
work (GAN)-based IDS for in-vehicle networks that can
detect unknown attacks while using only normal data
(i.e., non-attack data) for training. The generator in their
GAN-based IDS [23] generates fake CAN images to train the

discriminator to distinguish between normal and fake CAN
images. The authors in [23] evaluated their GAN-based IDS
for denial of service (DoS), fuzzy, RPM, and gear attack
datasets and obtained 97.9%, 98%, 98%, and 96.2% accu-
racies, respectively.

Xie et al. [24] developed a GAN-based CAN IDS uti-
lizing an enhanced GAN model to overcome the limitation
of generating rough CAN message blocks utilized in other
GAN-based IDSs. The authors in [24] tested their CAN
IDS against DoS, injection, masquerade, and data tampering
attacks and achieved approximately 99% precision, recall,
and F1 score for the tested attack types.

Nam et al. [25] developed a generative pretrained trans-
former (GPT)-based CAN IDS that can learn normal
CAN ID sequences to detect any small changes in the
sequence due to an attack. The authors used two GPT
NNs arranged bi-directionally to learn both historical and
future CAN ID sequences. The authors in [25] evaluated
their CAN IDS for flooding, spoofing, replay, and fuzzing
attacks, which showed a minimum 95% attack detection
F-measure.

Zhang et al. [26] developed a CAN fuzz testing method
to filter fuzzy messages using a GAN to generate fuzzy mes-
sages and an Adaptive Boosting or AdaBoost-based detection
system to detect anomalies in CAN communication due to
the fuzzy message injection. The Adaptive Boosting-based
anomaly monitor in [26] was shown to be able to detect even
slight anomalies in CAN communication.

Zhao et al. [27] developed a CAN IDS based on Auxiliary
Classifier GAN (ACGAN) and out-of-distribution detection.
Their proposed IDS consists of two stages of classifiers. In the
first stage, an ACGAN-based multi-class classifier is respon-
sible for classifying normal and known attacks and filtering
out-of-distribution samples. In the second stage, a binary clas-
sifier is responsible for detecting unknown attacks from the
out-of-distribution samples found in the first-stage classifier.
The authors in [27] achieved an average of 99% recall, 99%
precision, and 99% F1 score for DoS, fuzzy, gear spoofing,
and RPM spoofing attack detections.

Zhao et al. [28] developed a novel CAN intrusion attack
method called the same origin method execution (SOME)
attack and a GAN-based CAN IDS. Their proposed CAN IDS
utilizes one-hot encoding with an adopted GAN known as
GANomaly [29]. The authors in [28] tested their CAN IDS
against spoofing, bus-off, masquerade, and SOME attacks
and achieved a minimum of 91% and 93% detection accuracy

FIGURE 1. Structure of a CAN frame.
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for two test vehicles under all four types of attacks mentioned
above.

Although the studies listed in this section utilize one or
more generative NN models for either training their IDSs
or detecting in-vehicle CAN intrusions, or doing both, none
of the studies has considered embedding the label as a set
of pixels directly into the corresponding CAN image, and
then reconstructing the CAN image using a quantum RBM
for CAN intrusion detection. This study developed a hybrid
quantum-classical CAN intrusion detection framework lever-
aging RBM’s generative ability to reconstruct the embedded
labeling pixels in a CAN image and then utilize the recon-
structed CAN image for CAN intrusion detection.

IV. HYBRID QUANTUM-CLASSICAL FRAMEWORK FOR
CAN INTRUSION DETECTION
In this section, we present the hybrid quantum-classical
framework for CAN intrusion detection that utilizes a clas-
sical computer for data preprocessing and a quantum com-
puter for image reconstruction and classification. The steps
involved in our hybrid quantum-classical framework for CAN
intrusion detection are presented in Fig. 2.

A. CLASSICAL COMPUTER-BASED DATA PREPROCESSING
As mentioned in Section II, CAN messages can include
different data fields, such as timestamp, CAN arbitration
ID (i.e., an ID allocated to an in-vehicle system based on
its CAN message broadcasting priority), DLC (i.e., a code
that represents the length of the data contained in a CAN
message), data (i.e., a string that contains various information
in an encoded format related to the system that is broadcasting
the CAN message), CRC sequence (i.e., an error-detecting
code), and acknowledgment. In our hybrid quantum-classical
CAN intrusion detection framework, we convert a set of
CAN messages into a CAN image that not only contains the
information included in the CAN messages but also contains
a label representing whether the CAN messages are normal
messages or attack messages (i.e., injected false messages
by an attacker). The steps to convert the CAN messages
into label-embedded CAN images are as follows, 1) pri-
mary CAN image construction, 2) feature extraction using a

classical NN, and 3) binary encoding and label embedding.
Fig. 3 presents the details of data preprocessing based on a
classical computer, which we explain in this subsection.

1) PRIMARY CAN IMAGE CONSTRUCTION
The data contained in a CAN message is typically encoded
(e.g., HEX-encoded). Thus, the first step for primary CAN
image construction is to decode the encoded data using the
corresponding database CAN (DBC); a DBC contains rel-
evant information to decode CAN messages that may vary
based on a vehicle’s make, model, and year. Once decoded,
a set of features containing data from different in-vehicle
sensors is obtained. Then, we construct an N × N primary
CAN image using a set of N consecutive CANmessages with
the same CAN ID, where N is the number of decoded features
present in a CAN message with that CAN ID. Thus, in a
primary CAN image, a row represents a single CANmessage,
whereas a column represents a feature.

2) FEATURE EXTRACTION USING A CLASSICAL NN
We use a classical NN to extract features from an N × N
primary CAN image to create an 8 × 8 secondary CAN
image following the feature extraction procedure presented
in [18]. In a later stage, when we utilize a QA-based RBM,
we consider 64 neurons in each layer. Thus, our motivation
for creating 8 × 8 CAN images from N × N primary CAN
images is to be able to map each pixel of an image to a neuron
of the visible layer of an RBM, which we will discuss in
Section IV-B. The feature extraction using a classical NN can
be described as follows,

L8×8 = Lp−1 ⃝ Lp−2 ⃝ Lp−3 ⃝ . . . .. ⃝ L1 ⃝ L0 (1)

Ln : xn−1 −→ xn = φ(Wnxn−1 + vn) (2)

Here, L8×8 denotes the output of a classical NN, p denotes
the number of layers, Ln denotes the nth layer of the clas-
sical NN, xn−1 denotes the input vector of Ln, xn denotes
the output vector of Ln, Wn denotes the weight, vn denotes
a bias vector, and φ denotes a non-linear function. The
model parameters (Wn, p, vn) are optimized while training the
classical NN.

FIGURE 2. A hybrid quantum-classical CAN intrusion detection framework.
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FIGURE 3. Steps in classical computer-based data preprocessing.

3) BINARY ENCODING AND LABEL EMBEDDING
We resize the 8 × 8 secondary CAN images into 8 × 6
reduced-size secondary CAN images to allocate two right-
most columns, i.e., a total of 16 bits of each image, for embed-
ding the corresponding label to indicate whether the image is
a normal image or an attack image. Then, binary encoding is
performed on each 8× 6 image. In a binary CAN image, each
row represents a six-bit binary string: xm = (b1, b2, . . . , b6),
where bi ∈ {0, 1} ∀i = 1, 2, . . . , 6, and m represents the
row number. Each bit is a binary representation of a pixel
in a 8 × 6 reduced-size secondary CAN image, e.g., b1 =

1 in xm indicates the first feature is present in the m-th row,
whereas b1 = 0 indicates the first feature is absent in the
m-th row. Binary image thresholding with a fixed threshold
value of 0.5 is used to generate a binary CAN image xm
from an 8 × 6 reduced-size secondary CAN image [18].
After performing binary encoding, each binary CAN image
of 8 × 6 size is embedded with the corresponding image
label, i.e., whether the image represents an attack image or
a normal image. This embedding is either an 8 × 2 matrix
of ones when an image represents an attack image, or an
8 × 2 matrix of zeroes when an image represents a normal
image. Then, this 8 × 2 matrix is concatenated horizontally
with the corresponding 8 × 6 binary CAN image giving each
final processed binary CAN image with the embedded label
an overall size of 8 × 8.

B. QUANTUM RBM FOR IMAGE RECONSTRUCTION AND
BINARY CLASSIFICATION
The final processed binary CAN images with embedded
labels are reconstructed by a quantum RBM. The recon-
structed CAN images are then used for binary classification

based on the reconstructed bits in the images dedicated
to labeling. In this framework, we consider an adiabatic
quantum computer offered by D-Wave, which is based
on superconducting electronics and allows QA-based sam-
pling [30], for image reconstruction and classification. This
subsection starts with the motivation for using quantum
computers for training RBM models and then presents
the details of training a quantum RBM for CAN image
reconstruction.

Quantum computing utilizes quantum mechanics princi-
ples to process information. As opposed to classical comput-
ers that use classical bits (i.e., 0 and 1), quantum computers
use quantum bits (qubits) represented by photons, atoms,
ions, etc., to process information. In addition, due to quantum
phenomena, such as superposition and entanglement, quan-
tum computing has the potential to process information at a
much higher rate compared to classical computers. Unlike a
classical bit that can only take a value of 0 or 1, a qubit can
be in a state of 0, 1, or any combination of 0 and 1, known as
superposition. A classical systemwith four bits can be used to
represent only one out of 16 combinations at once, whereas a
quantum computer with four qubits can represent all 16 com-
binations simultaneously using superposition. On the other
hand, the entanglement of two qubits refers to a quantum phe-
nomenon that enables a quantum computer to instantaneously
determine the state of an entangled qubit by only measuring
the state of the other entangled qubit. Because of this unique-
ness, quantum computing has shown tremendous potential
in speeding up the process of solving complex problems,
such as complex non-linear and non-convex optimization
problems. This is particularly beneficial for training ML or
DLmodels since the gradient descent-based model parameter
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FIGURE 4. Schematic of an RBM architecture.

update rule is among the most fundamental algorithms for
developingmostML andDLmodels. However, for a complex
non-linear optimization problem, gradient descent-based ML
or DL model training often suffers from non-convergence
issues due to getting stuck at a local minimum. Thus, reach-
ing the global minimum for such problems is sometimes
challenging and computationally expensive for classical com-
puters, which can be eased down by using a quantum
approach.

In this study, the authors are particularly interested in
developing RBM models using a quantum computer. RBM
is an energy-based stochastic generative NN model, which
can be represented by a bipartite graph (i.e., only nodes
from alternate layers between the two layers of the bipartite
graph can be connected) consisting of two layers of nodes
known as visible layer and hidden layer nodes (as shown in
Fig. 4). Each connection is associated with a weight while the
corresponding nodes are associated with biases. The energy
function of an RBM is given by,

E (v, h) = −

∑
i

aivi −
∑
j

bjhj −
∑
i,j

vihjwij (3)

where, vi and hj are two visible and hidden layer nodes, and
ai and bj are their associated biases, respectively; and wij is
the weight of the connection between vi and hj. Here, the
probability of a given state (v, h) is given by,

p (v, h) =
1
Z
e−E(v,h) (4)

where, Z is a partition function used for normalization and is
given by,

Z =

∑
(v,h)

e−E(v,h) (5)

As it is difficult to compute all the possible combinations of
v and h, computing Z is a computationally expensive process.
In CD-based training, this problem is simplified by assuming
that the variables are independent. The readers are referred
to [14] for CD-based training.

Alternatively, an RBM model can be mapped to a binary
quadratic model (BQM), in which the variables are essen-
tially binary, and the model is a combination of linear
and quadratic terms. The objective function of a BQM is

given by the Ising model, which is shown in the following
equation [31],

Eising (s) =

N∑
i=1

hisi +
N∑
i=1

N∑
j=i+1

Ji,jsisj (6)

where, s is a vector of binary variables representing the spins,
i.e., si ∈ {−1, +1}, and h denotes the linear coefficients
associated with the qubit biases, and J denotes the quadratic
coefficients associated with the coupling strengths. A simi-
lar way to represent the BQM models in computer science
is the quadratic unconstrained binary optimization (QUBO)
model, where the objective function is given by the following
equation [31],

f (x) =

∑
i

Qiixi +
∑
i<j

Qijxixj (7)

where, x is a vector of binary variables such that xi ∈ {0, 1},
Q is an N×Nupper triangular matrix consisting real weights,
i.e., Qij represents the element of the ith row and jth column
of Q, and Qii represents the diagonal element of the ith row
ofQ; and xi and xj are the ith and the jth elements of x, which is
a vector of binary variables. Note that the conversion between
the functions presented in (6) and (7) is trivial, as (7) simply
performs a linear transformation to change the spins (si) to
a binary variable xi, i.e., xi = (1 + si)/2. Thus, the energy
function of an RBM in (3) can also bemapped to the objective
function of a QUBO problem in (7).

A QUBO problem as in (7) can be expressed as a Hamil-
tonian given by the following equation,

H (x) = −

∑
i

Qiiσ
z
i −

∑
i<j

Qijσ
z
i σ

z
j (8)

where, σ zi denotes a Pauli-Z gate applied on the i-th qubit.
In [32], the authors presented how to solve such problems
using QA by extending the Hamiltonian in (8) with a trans-
verse field. QA is an optimization technique to find the
global optimum of an objective function from a given set of
candidates. The Hamiltonian with a transverse field can be
written as follows,

H (x) = −A (x)
∑
i

σ xi − B (x)

∑
i

Qiiσ
z
i +

∑
i<j

Qijσ
z
i σ

z
j


(9)

where, A and B are two weighting functions, and σ xi denotes
a Pauli-X gate applied on the i-th qubit. In [32], the authors
proved that using theHamiltonian in (9), QA could lead to fast
convergence (i.e., reaching the ground state with the lowest
energy in (9)) with amuch higher probability than its classical
counterpart.

D-Wave is a commercially available QA system that can
be utilized to solve such QUBO problems using the Hamil-
tonian given in (9) [31]. Thus, the authors chose to utilize a
D-Wave QA system (i.e., D-Wave Advantage 4.1 systemwith
over 5,000 qubits) for training the quantum RBM models
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in this study. In addition, using D-wave’s quantum sampler,
the authors can obtain accurate samples from the origi-
nal probability distribution of the model given in (4) [33].
Obtaining accurate samples from the original probability
distribution is a computationally expensive task for classical
computers. However, unlike CD-based training, assuming
that the variables are independent is unnecessary while using
QA-based training. The authors refer the readers to [33]
for the details of an RBM implementation using QUBO
and QA-based training, which the authors adopted in this
framework.

V. EVALUATION METHOD
This section presents the evaluation method for evaluating
our hybrid quantum-classical CAN intrusion detection frame-
work based on data collected from a real-world vehicle.
To evaluate the efficacy of the framework, we compared
the intrusion detection performance of our framework with
a similar but classical-only framework, i.e., all steps of the
classical-only framework are accomplished in a classical
computer, including the RBM-based image reconstruction.
In this section, first, we will discuss the datasets we used
for this evaluation. Next, we will explain the details of CAN
intrusion detection based on the framework presented in
Section IV followed by a discussion on the evaluation metrics
we used.

A. DATASET
For evaluation, we used a CAN intrusion dataset cre-
ated by the Hacking and Countermeasure Research Lab
(HCRL) [34]. The CAN intrusion datasets provided in [34]
include fuzzy, malfunction, and replay attack datasets. For
this study, we used a fuzzy attack dataset generated by inject-
ing random CAN messages to the CAN bus of a KIA Soul
vehicle. The dataset is already labeled and includes both
the fuzzy CAN messages and the normal CAN messages.
As shown in Fig. 5, the dataset contains the following fields:
(i) timestamp, (ii) CAN ID (in Hex), (iii) data length code
(DLC), (iv) data (encoded as a Hex string), and (v) flag or
label (‘R’ represents a normal message, and ‘T’ represents
an injected message). We divided the messages into different
datasets based on the associated CAN IDs and selected three

FIGURE 5. CAN fuzzy attack dataset.

datasets based on randomly chosen CAN IDs, i.e., dataset 1
(with CAN ID: 0x220), dataset 2 (with CAN ID: 0x316), and
dataset 3 (with CAN ID: 0x329), that contain both the normal
and injected CAN messages. Each CAN ID is dedicated
to broadcasting a particular set of information. Thus, the
three datasets used here contain different sets of information
encoded as Hex strings. Details of the datasets are presented
in Table 1.

B. CAN INTRUSION DETECTION
First, we decoded the encoded data fields in each dataset
using a generic Database CAN (DBC) file for KIA vehi-
cles from the OpenDBC repository [35]. After decoding,
we obtained several features containing data from different
in-vehicle sensors. Table 1 lists some example features for
each dataset. Next, we constructed primary CAN images
from the decoded CAN messages in each dataset. Each
primary CAN image is obtained by vertically stacking N
consecutive decoded CAN messages from a dataset, where
N is the number of decoded features in that dataset. Then,
we trained a classical NN to extract features from the pri-
mary CAN images to form 8 × 8 secondary CAN images,
as explained in Section IV-A-II. The 8 × 8 secondary
CAN images were resized to 8 × 6 to concatenate two
columns that represent the labeling bits. After concatenating
the labels with the 8 × 6 CAN images, we obtained the
final processed 8 × 8 CAN images with embedded labels, as
explained in Section IV-A-III. Fig. 6 provides some exam-
ples of the binary encoded CAN images with embedded
labels.

The final processed CAN images in each dataset
were divided into a training dataset (including randomly

TABLE 1. Details of the datasets.
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FIGURE 6. Examples of processed binary CAN images with embedded labels.

shuffled 80% of the CAN images) and a test dataset (includ-
ing the remaining 20% of the CAN images). For each training
dataset, we trained a classical RBM model using CD-based
training and a quantumRBMmodel usingQA-based training.
The QA-based training of RBMmodels was performed using
the D-Wave Advantage 4.1 System, whereas the CD-based
training for the classical RBM models was performed in a
classical computer. The hyperparameters (i.e., learning rate,
number of epochs, weights, and biases) of each RBM model
were optimized to yield the best CAN intrusion detection per-
formance. Both classical and quantum RBMmodels included
64 visible layer nodes and 64 hidden layer nodes that resulted
in 64 visible layer biases, 64 hidden layer biases, and 64 ×

64 weights to be trained. The same training and test datasets
were used for training both the classical and the quantum
RBM models for comparison. The source code is provided
in GitHub [36].

For evaluation, the labeling bits of each CAN image in
a test dataset are first replaced by random binary bits. The
trained RBM models are then used for reconstructing the
CAN images in the test datasets. A reconstructed image
is classified as a normal image if most of the bits among
the 16 bits dedicated to labeling indicate a normal image,
otherwise the reconstructed image is classified as an attack
image.

C. EVALUATION METRICS
The CAN intrusion detection task in this study (i.e.,
fuzzy attack detection) falls under the category of binary

classification (i.e., attack data or normal data). Therefore,
classification accuracy (i.e., CAN intrusion detection accu-
racy) is considered as the primary evaluation metric in this
study. Recall is considered as the secondary evaluation metric
since it provides a measure of correctly detected attack data
among all the attack data. Binary classification accuracy and
recall are given by,

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(10)

Recall =
TP

TP+ FN
(11)

where, TP denotes the total number of true positives,
TN denotes the total number of true negatives, FP denotes
the total number of false positives, and FN denotes the total
number of false negatives. In addition, we utilize a confusion
matrix to present a closer view at the classification perfor-
mance of a model on the test dataset.

VI. EVALUATION RESULTS AND DISCUSSIONS
Fig. 7 presents the accuracies and recalls of the classical
RBM and the quantum RBM approaches for each dataset.
As observed from Fig. 7, the quantum RBM approach outper-
formed the classical RBM approach for all three datasets used
in this study. Among the three datasets, the minimum and
maximum CAN intrusion detection accuracies while using
the quantum RBM approach were 97% and 98.3%, respec-
tively, whereas the minimum and maximum CAN intrusion
detection accuracies for the classical RBM approach were
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FIGURE 7. Comparison of CAN intrusion detection performance.

92.5% and 95%, respectively. On the other hand, the mini-
mum and maximum recalls for the quantum RBM approach
were 93.9% and 97.2%, respectively, whereas the minimum
and maximum recalls for the classical RBM approach were
84.2% and 89.8%. Thus, the hybrid quantum-classical frame-
work was able to improve both the accuracies and recalls
for CAN intrusion detection on all three datasets used in
this study compared to the classical-only framework. Fig. 8
shows a confusion matrix for each model’s classification
performance on each test dataset, which also shows that the
quantum RBM models improved the classification perfor-
mance on all three test datasets (contained in datasets 1, 2,
and 3) compared to the classical RBM models.

The improvement in intrusion detection performance
found in this study while using the quantum RBM can be
attributed to several factors. Quantum DL models have been
reported in the literature to achieve similar or better classi-
fication performance while being trained on a much smaller
dataset compared to their classical counterparts. This implies
that while being trained on the same dataset and using the
same DL model architecture with the same number of model
parameters, quantum DL models might achieve better clas-
sification performance compared to the classical DL models,
which aligns with the observations of this study. TrainingML
or DLmodels heavily utilizes optimization-based approaches
for updating the model parameters. However, a classical
computing-based optimization process might get stuck at
some local minima, which can be overcome by utilizing
a quantum optimization approach as it leverages quantum
tunneling to bypass the local minima and reach the global
minimum quickly. Quantum tunneling enables atoms, elec-
trons, or photons to pass through potential energy barriers,
which helps in bypassing local minima to reach the global
minimum. In addition, the hybrid framework utilized D-
Wave’s QA-based sampling for training the RBM models
that enables accurate sampling from the original probability

FIGURE 8. Confusion matrices.

distribution of the models unlike the CD-based training of
the RBM models used in the classical-only framework that
samples from the conditional probability distribution, as dis-
cussed in Section IV-B. Also, unlike other generative NNs
(e.g., generative adversarial network or GAN and generative
pretrained transformer or GPT) that would require rigorous
training to obtain a well-performing CAN IDS, the hybrid
framework utilizes a simpler generative NN architecture of
an RBM that can quickly learn to detect attacks by learning
the patterns of normal and attack CAN images embedded
with labeling pixels. All of the quantum RBM models in
this study converged within a comparable number of epochs
while yielding an overall higher attack detection accuracy and
recall than the classical RBM, which proves the efficacy of
the hybrid quantum-classical CAN intrusion detection frame-
work.

VII. CONCLUSIONS
Quantum computing has the potential to build an ironclad
defense against numerous cyberattacks in a transportation
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cyber-physical systems environment. However, given the cur-
rent status of quantum computers, the best way to utilize
them is to use hybrid quantum-classical approaches. In this
study, we presented a hybrid quantum-classical CAN intru-
sion detection framework utilizing a classical NN and a
quantumRBM. In this framework, data preprocessing is done
in a classical computer to generate CAN images with embed-
ded labeling pixels from CAN messages. A quantum RBM
is used in the framework to reconstruct each CAN image
along with its labeling pixels, which is then used for an image
classification-based CAN intrusion detection. We evaluated
our hybrid quantum-classical CAN intrusion detection frame-
work on three different real-world fuzzy attack datasets and
compared the CAN intrusion detection performance of the
hybrid framework with a similar but classical-only frame-
work. Based on the experiments conducted on the datasets,
the minimum accuracy and recall for the hybrid framework
were 97% and 93.9%, respectively, whereas for the similar
but classical-only framework, the minimum CAN intrusion
detection accuracy and recall were 92.5% and 84.2%, respec-
tively. The uniqueness of this study lies in utilizing the gener-
ative ability of a generative NN (i.e., RBM) for reconstructing
the labeling pixels embedded in a CAN image, which could
contribute towards an accurate image classification-based
CAN intrusion detection.

It should be noted that although the hybrid quantum-
classical CAN intrusion detection framework utilizes a quan-
tum computer to train the RBM models, once the RBM
models are trained to yield a desired intrusion detection
performance, the quantum computer is not used anymore.
The trained models can then be transferred to an in-vehicle
computing unit where the entire process of CAN intrusion
detection will take place. This will help minimize the end-
to-end latency in a CAN IDS, which then could support a
real-time in-vehicle intrusion detection application.

This study used QA-based training to develop the RBM
models for the hybrid quantum-classical CAN IDS. Future
studies should focus on developing gate-based RBM models
for CAN IDS and compare them with the QA-based RBM
models.
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