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SUMMARY

The determination of magnetic structure poses a long-standing challenge in
condensed matter physics and materials science. Experimental techniques such
as neutron diffraction are resource-limited and require complex structure refine-
ment protocols, while computational approaches such as first-principles density
functional theory (DFT) need additional semi-empirical correction, and reliable
prediction is still largely limited to collinear magnetism. Here, we present a ma-
chine learning model that aims to classify the magnetic structure by inputting
atomic coordinates containing transition metal and rare earth elements. By build-
ing a Euclidean equivariant neural network that preserves the crystallographic
symmetry, the magnetic structure (ferromagnetic, antiferromagnetic, and non-
magnetic) and magnetic propagation vector (zero or non-zero) can be predicted
with an average accuracy of 77.8% and 73.6%. In particular, a 91% accuracy is
reached when predicting no magnetic ordering even if the structure contains
magnetic element(s). Our work represents one step forward to solving the grand
challenge of full magnetic structure determination.

INTRODUCTION

As one of the most prominent quantum phenomena, magnetism of materials encompasses a large portion

of functional applications such as data storage (Fert, 2008), high-resolution imaging (Vlaardingerbroek and

Boer, 2003), spintronic devices (Manchon et al., 2019), high-energy scientific instruments (Artsimovich,

1972; Wiedemann, 2015), and quantum computing (Gershenfeld and Chuang, 1997; Balents, 2010). Partic-

ular types of magnetism are also believed to be associated with unconventional quantum phases such as

high-Tc and topological superconductivity (Keimer et al., 2015). Unlike small molecules where magnetic

structures contain only several high-spin and low-spin configurations, spatial correlations between mag-

netic moments in sizable materials constitute vast possibilities of different magnetic configurations. With

infinite combinations of wavevectors, moments, and correlations lengths, magnetic materials can form a

variety of structures such as antiferromagnetism (Shull and Smart, 1949), non-collinear magnetism, sky-

rmions (Mühlbauer et al., 2009), spin glass (Binder and Young, 1986), and quantum spin liquids (Banerjee

et al., 2017; Zhou et al., 2017). Therefore, the determination of magnetic structures, either experimentally

or theoretically, is crucial for materials discovery and technological progress in general.

Experimentally, the state-of-the-art neutron scattering (Lovesey, 1986) and more recently resonant X-ray

scattering (Ament et al., 2011) have enabled the characterization of magnetic structures with atomic-scale

resolution. However, these measurements require large-scale neutron sources or synchrotron X-ray radia-

tion and are highly limited by the capacity and beamtime availability. According to the most comprehen-

sive database, only�1,500materials’ magnetic structures have been identified through these experimental

spectra since the 1950s (Gallego et al., 2016a, 2016b). Therefore, without order-of-magnitude improve-

ments of these facilities’ capacity, a pure experimental exploration of magnetic materials is yet to catch

up with the rapidly rising demand for materials’ discovery of new magnetic materials.

Theoretically, ab initio simulations with advanced quantum chemistry and physics methods have been suc-

cessfully applied to the prediction of magnetism of small molecules (Li et al., 2019). However, the Fock

space increases exponentially with the system size, which makes it impractical to be extended to sizable
iScience 25, 105192, October 21, 2022 ª 2022 The Author(s).
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materials beyond nanoscale without any approximation. The first-principles DFT simulations and the

associated corrections provide an efficient compromise between accuracy and scalability. Although

the delocalization error and the lack of static correlationmay underestimate themagnetic moment and cor-

relations (Huang et al., 2016; Liu et al., 2019), DFT-based methods have enabled high-throughput calcula-

tions over �10,000 materials (Jain et al., 2013), allowing for preliminary statistical predictions of materials’

properties. Even with substantial acceleration compared to experiments and wavefunction-based

methods, the computational complexity of DFT calculations is still non-negligible and hinders the discov-

ery in a huge, possibly infinitely large, parameter space of chemical compositions. Moreover, since elec-

tronic structure theory evaluates the energy for a specific electronic configuration, including the magnetic

structure, the standard simulation requires traversing all configurations for a single atomic structure and

determining the ground-state magnetic configuration. Thus, the large number of possible magnetic

configuration forms a ‘‘guessing-computing’’ duo, that is, guessing many possible configurations and

computing them one by one. Consequently, most computational efforts are spent on irrelevant magnetic

excited states rather than the true ground states. A reliable prediction of the ground-state magnetic struc-

ture would greatly accelerate high-throughput calculation and bring us closer to achieving simulation-free

materials discovery.

Given the challenges in magnetic structure determination from experiments and calculations, significant

research effort has recently been dedicated to using machine learning to enhance magnetic structure

determination. Some recent studies combine DFT calculations with machine learning (Rhone et al.,

2020; Zheng and Zhang, 2021; Katsikas et al., 2021; Frey et al., 2020; Miyazato et al., 2018), in some of which

the ‘‘guessing’’ step in the guessing-calculating procedure is obtained with machine learned models. For

instance, machine learning has been implemented to reduce the search space of possible magnetic con-

figurations in the ‘‘guessing’’ step. With this approach, the main calculation task is still carried out by the

standard first-principles DFT calculations. Some other works are based on model Hamiltonians (Wang

et al., 2020; Samarakoon et al., 2020), mostly classical spin models, and use machine learning methods

to fit the free parameters in such amodel, such as from experimental data that contain the spin information.

Even so, the direct prediction of magnetic structure from the more direct atomic structure, aka replacing

the ‘‘computing’’ step, is still challenging.

A full description of magnetism (Rodrı́guez-Carvajal and Villain, 2019) can be nontrivial. In this work, we

focus on two different descriptions that use relatively few variables: magnetic order labels and propagation

vectors. Magnetic ordering labels (e.g. ferromagnetic (FM) and antiferromagnetic (AFM)) are helpful

because they summarize the complexity of magnetic structures into simple classes that are application

relevant. Both ferromagnetic and ferrimagnetic materials exhibit a spontaneous magnetization: a non-

zero net magnetic moment in the absence of an external magnetic field, while in FM all magnetic dipoles

point in the same direction, and in FiM some of the dipoles point in the opposite direction. The antiferro-

magnetic materials have dipoles that point in the opposite direction in a regular pattern, but they cancel

each other and the net magnetic moment is zero. The magnetic dipoles in non-magnetic materials orien-

tate irregularly without a pattern, and the net magnetic moment is zero. A propagation vector is a vector in

reciprocal space that describes symmetry breaking due to the presence of a magnetic order (ibid.). A non-

zero propagation vector is one indicator for a more involved magnetic structure beyond the FM, AFM, and

NM ternary classification. While these descriptions are expressive, they are not comprehensive and we

leave more complex descriptions of magnetic order to future work.

We build an ML-based classifier that predicts the magnetic order under a ternary classification (FM/FiM:

ferromagnetic/ferrimagnetic, AFM: antiferromagnetic, NM: non-magnetic), and also outputs whether the

propagation vector is zero or non-zero. We choose these two in our prediction as a start; in doing so, we

acquire partial but valuable information that may accelerate full magnetic structure determination. Some

prior efforts of using machine learning to predict magnetic properties, like (Rhone et al., 2020; Miyazato

et al., 2018), are restricted to a specific crystal structure. Only the types and ratios of elements to fill in the

fixed crystal structure can be changed, chemical formula alone is enough to serve as inputs. There are

also studies like (Himanen et al., 2020; Pham et al., 2018), where matrix descriptors are used to encode

Coulomb interactions or relative distance between atoms. These models can be generalized to different

crystal structures; however, due to the limitation of the matrix form, it becomes harder to encode all

structure information for materials with many atoms in each unit cell and longer interaction range. Our

prediction model applies to general cases, the inputs are crystal structures of any space group and
2 iScience 25, 105192, October 21, 2022
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some atomic properties; our model can directly output the magnetic order and propagation vector

given the inputs encoded as described in section Model architecture. This is realized by applying the

Euclidean neural network (E(3)NN) (Geiger et al., 2021), the graph structures enable us to encode crystal

structures as inputs; furthermore, E(3)NN preserves 3D rotation, inversion, and translation symmetry in

the atomic structures, so that high accuracy is reached without data augmentation (ibid.). The accuracy

in test set is about 78% for magnetic order prediction and about 74% for propagation vector prediction.

The accuracy varies when the material of interest contains different elements or belongs to different

space groups, as we will elaborate in the results section. Since the magnetic order and propagation vec-

tor represent two different pieces of magnetic structure information, they are trained separately with

different neural network architectures and training data from the Materials Project (Jain et al., 2013)

and MAGNDATA (Gallego et al., 2016a, 2016b) databases, respectively. The atomic structure inputs

for magnetic order classifiers are from Materials Project, magnetic order labels are obtained using

pymatgen’s magnetism analyzer given structures with atoms decorated with DFT-calculated magnetic

moments as inputs. Both structures and propagation vectors for propagation vector classifiers are

from MAGNDATA.
METHODOLOGY

Data assembly

In order to train the magnetism classifier, we assemble a dataset containing both structure and magnetic

order information from theMaterials Project (Jain et al., 2013). We query structures that contain at least one

magnetic elements, including transition metals (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Y, Nb, Mo, Ru, Rh, Re, Os,

Ir, and Pt), lanthanides (Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb), and/or actinides (Th, U, Np, and

Pu); however, a material containing a magnetic element does not necessarily host magnetic order. Our

search is restricted to calculations using the generalized gradient approximation with Hubbard interaction

(GGA + U) (Jain et al., 2013, 2018; Wang and Navrotsky, 2004), which is suitable for magnetic structure cal-

culations and leads to a total of 34,856 structures (Due to recent updates in the Materials Project, if

querying in latest pymatgen version with the same magnetic elements, the number of total structures

may change. Our models are trained and tested based on pymatgen version 2022.0.8, with 34,856 total

structures after querying), among which 30,584 are FiM/FM, 1,790 are AFM, and 2,482 are NM. The mag-

netic order labels are derived using the Python-based pymatgen analysis code (Ong et al., 2013) and

through use of a CollinearMagneticStructureAnalyzer class. The CollinearMagneticStructureAnalyzer

class uses the DFT-calculated magnetic moments and total magnetization (the absolute value of the

sum of individual magnetic moments) to assign one of the following labels: FM if the total magnetization

is greater than zero and all magnetic moments have the same sign, FiM if the total magnetization is

greater than zero, AFM if total magnetic moment is zero and max absolute magnetic moment greater

than zero, or NM magnetic order if total and max magnetic moment is zero. We then train 20 classifiers

with different initial weights, each optimized on a randomly selected subset of 6,086 structures with a

AFM:FM:NM ratio of 5:6:6. The size of each class is kept comparable in each selected subset to mitigate

the training bias toward non-magnetic examples, since there is a substantially larger fraction of FM/FiM

structures in the total dataset and only 1,790 AFM examples. Each subset of 6,086 materials is divided

among training, validation, and test sets with a ratio of 0.8:0.1:0.1. Note that we find this further improves

our model’s ability to differentiate between AFM and FM/FiM classes, and the smaller data size helps

reduce the overall training time.

Magnetic materials may host more complex magnetic structures beyond AFM/FiM which are described by

other non-zero magnetic propagation vectors. In order to capture this complexity, we further train a binary

classifier of the propagation vector magnitude (zero or non-zero). The zero propagation vector represents

the prototypical FM order, while the non-zero propagation vector represents AFM/FiM orders and beyond.

We obtain the structure and magnetic propagation vector information from the MAGNDATA database

(Gallego et al., 2016a, 2016b), which to date contains the comprehensive experimentally determined mag-

netic structures of 1,562 compounds. The data used in this study were restricted to commensurate mag-

netic structures, as incommensurate magnetic structures always have non-zero propagation vectors. This

yielded 1,134 total structures, of which 552 (582) have zero (non-zero) propagation vectors. We again train

20 classifiers with different initial weights, independently dividing the 1,134 total structures at random

among training, validation, and test sets with a ratio of 0.8:0.1:0.1 for each model. To link the propagation

vector classification with that of magnetic order, we show the statistics of structures appearing in the prop-

agation vector classification datasets in Figure 1. Some structures’ magnetic orders are unknown to
iScience 25, 105192, October 21, 2022 3



Figure 1. Number of examples with zero and non-zero propagation vector in each magnetic ordering class
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pymatgen’s magnetism analyzer which we use for determiningmagnetic order, so those are not included in

the figure. Most structures with non-zero propagation vector are AFM, some are FiM, and none are FM or

NM, as expected. The propagation vector classifier can further divide AFM and FiM classes into sub-classes

with zero/non-zero propagation vector, giving us more information about the magnetic structure of a ma-

terial. The hyperparameters of the model are extensively optimized by random search, and the initial set of

hyperparameters is close to those presented in a previous relevant study using E(3)NN for phonon DOS

prediction (Chen et al., 2021).

Model architecture

The architecture of both classifiers is based on Euclidean Neural Networks (E(3)NNs) (Geiger et al., 2021), a

class of 3D Euclidean group (E(3))-equivariant neural networks. Any space group that describes the crystal

geometric symmetries in three dimensions is a subgroup of E(3), and thus E(3)NNs preserve all geometric

symmetries of the crystal structure, which removes the need for extensive data augmentation needed to

consider arbitrary translations or rotations of the input structures. The neural network inputs consist of a

material’s crystal structure and one or more descriptors of each constituent atom. Specifically, the unit

cell of each example is first converted into a periodic graph, where each node a represents an atom

described by a feature vector xa. A single convolutional layer operates on the input xa and the radial dis-

tance vectors r!ab between atoms a and b in the neighborhood of a up to a radial cutoff rmax = 5Å, as shown

in Figure 2A. The feature vector xa associated with each node is constructed by a property-weighted one-

hot encoding of selected atomic properties, illustrated in Figure 2B. For the propagation vector classifier,

each feature vector is an array of 125 scalars, with the Z-th scalar being the atomic mass in amu (atomic mass

units), where Z denotes the atomic number. Additional properties can be considered by simple concate-

nation of several such feature vectors, each weighted by the appropriate value of the property of interest.

For example, each of the input feature vectors used for the magnetism classifier is an array of 33 118 sca-

lars, formed by concatenating three arrays of 118 scalars that encode the atomic radius (pm), electroneg-

ativity on a Pauling scale, and dipole polarizability (a.u.). The motivation for choosing these descriptors is

they are related to the screened Coulomb interactions between atoms, and themagnetic properties can be

solved in a lattice model if given the atomic structures and interactions between atoms. The input feature

vector used for the propagation vector classifier only encodes the atomic mass, because given the very

limited number of training data for this task, a simpler mapping that takes low-dimensional feature vectors

as inputs would likely to have a less complicated loss landscape and be more favorable for training. Among

the feature vectors that encode only one property, the ones with atomic mass have better performance

compared to unit-weighted one-hot encoding and other properties we used for the magnetic order

classifier.

The architecture of both classifiers consists of three principal parts, as shown in Figure 3. First, the input

feature vectors xa are passed to an embedding layer and mapped to a lower dimensional feature vector

fa. The E(3)NN layers are then applied to the resulting hidden feature fa and consist of alternating convo-

lution and gated block operations (dashed rounded rectangle). The convolution signifies the tensor
4 iScience 25, 105192, October 21, 2022



Figure 2. Illustration of input data structures

(A) A representative periodic graph constructed from the crystal structure in the neighborhood of a given atom. Each

atom (node) carries a feature vector xa, and each edge connecting node a to a neighboring node b is characterized by the

relative distance vector r!ab.

(B) Each atom is represented by a node in the periodic graph, and the atom type is expressed by a property-weighted

one-hot feature vector. The top row shows a set of representative feature vectors used for the propagation vector

classifier. Each is an array of 125 scalars, with the Z-th scalar being the atomic mass in amu (atomic mass unit), where Z

denotes the atomic number. The bottom row shows a set of representative feature vectors used for the magnetism

classifier. Each is an array of 33 118 scalars, formed by concatenating three arrays of 118 scalars which encode the atomic

radius(pm), electronegativity on a Pauling scale, and dipole polarizability(a.u.) of a given atom employing the same

property-weighted one-hot encoding scheme used for the propagation vector classifier input.
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product between input feature vectors and symmetry-constrained convolutional kernels. The convolution

step is implemented as:

f 0a =
1ffiffiffi
z

p
X

b;
�� r!ab

��< rmax

fb 5
�
h
�k r!ab k�� Y� r!ab

� k r!ab k �
:

(Equation 1)

where the node f 0a is the output feature for the atom a. Each summand in (1) is a tensor product between the

spherical harmonics Y ð r!ab = k r!ab kÞ and the feature fb of a neighboring atom b, with r!ab being the po-

sitional vector pointing from atom a to b. Every tensor product could have multiple allowed paths(For

example, two vector-like features u! and v! are able to generate a scalar w by inner product, a vector w!
by cross product, and a matrix W by outer product, thus leading to an output feature as the u1w4

u2w
!4u3W , whereui’s denotes scalar weights that one can optionally adopt), where each path is multiplied

by a scalar weight given by the output of the neural network hðk r!ab kÞ. Intuitively, the spherical harmonics

Y ð r!ab = k r!ab kÞ and neural network hðk r!ab kÞ take into account of direction and distance information of

r!ab, respectively. In addition, the z denotes the average number of neighboring atoms based on training

dataset; thereby, the prefactor 1=
ffiffiffi
z

p
can properly normalize the summed tensor products to increase nu-

merical stability after several such layers.

The gated block step denotes a rotation-equivariant nonlinear activation function, which takes a set of

input irreducible representations, xi (scalar-like features) and yi (higher degree features such as vectors

and matrices), and outputs a set of activated features:

ð4i4iðxiÞÞ4
�
4j4j

�
gj

�
yj
�
; (Equation 2)

where the symbol 4 denotes the direct sum(Intuitively, this means components of different features are

‘‘concatenated’’ instead of summed (with the
P

sign), i.e., w4w! can be stored into a single array

½w;w1;w2;w3�. Thewi’s are components of w!, namely ½w!� = ½w1;w2;w3�). More specifically, the scalar features

xi are directly passed into activation functions4i , while higher degree ones yj are activated indirectly by passing

additional learnable scalar featuresgj to activation functions4j, which then serveasmultiplyingpre-factors of yj.

Finally, the E(3)NN output is converted to a class label by first adding together the output vectors for all

atoms in a given material, and then applying a final nonlinear activation. For the propagation vector clas-

sifier, the output is a sigmoid-activated scalar, while for the magnetism classifier, it is a softmax-activated

array of three scalars giving the probability of exhibiting one of three magnetic orders (AFM, FM/FiM, and

NM). Intuitively, the model is appropriate for magnetic properties prediction for the analogy between E(3)
iScience 25, 105192, October 21, 2022 5



Figure 3. Illustration of the neural network architectures for propagation vector (top block) and magnetic order classification (middle block)

The models each consist of three principal layers: embedding layers, convolution and gated layers based on E(3)NN, and the output layers which generate

the predicted classes. The convolution and gated layers of both models share the same architecture (detailed architecture shown in the bottom block). Even

though the loss functions and embedding layers are optimized separately, by adopting this approach, one atomic structure can lead to a simultaneous

prediction of both magnetic order and propagation vector.
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NN and a lattice model for magnetic materials. In a lattice model, the magnetic configurations with the

lowest energy can be derived given the screened Coulomb interactions between atoms(lattice sites).

Equivalently in E(3)NN, it has the same graph structure as a lattice model, and information that is related

to screened Coulomb interactions, including atomic properties and distance between atoms is encoded.

The step of adding together the outputs vectors and applying a final nonlinear activation is equivalent to

deriving magnetic orders from the net magnetic moment among atoms.

RESULTS

To quantify the consistency of predictions made by the magnetism and propagation vector classifiers, we

independently train 20 models for each task using randomly drawn data subsets as described in section
6 iScience 25, 105192, October 21, 2022



Figure 4. Prediction accuracies in test sets for magnetic orders (left) and propagation vectors (right) collected

from 20 independently trained models
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data assembly above. For the magnetic order classification, we show the test set accuracies of the 20

models in the left panel of Figure 4, which range from 73.8% to 80.7% and have a mean accuracy of

77.8%. For the propagation vector classification, the test accuracies obtained from 20models are displayed

in the right panel, ranging from 68.1% to 85.0% with a mean of 73.6%; the thresholds of this binary classi-

fication are chosen separately for each model to guarantee maximal accuracy. In Tables 1 and 2, we sum-

marize the averaged precision, recall, and F1-scores over all trained models for the two tasks, respectively.

We note that the larger spread of accuracies in propagation vector classification can possibly be attributed

to fewer training examples (1,134 total structures taken 907 at a time for training), which are not sufficient for

our model to learn all complex connections between crystal structures and propagation vectors. Besides, it

may also suggest that the propagation vector contains rich strong correlation effect that cannot be fully

characterized by only atomic structures. More details about the performance of both classifiers are

apparent in the confusion matrices (CM) shown in Figure 5. For the magnetic order classifier, we observe

excellent separation of the NM class from the two magnetic classes (Figure 5A). Since all calculations are

performed at T = 0K, we believe that this non-magnetic separation is important in rapidly screening and

excluding materials that do not host any magnetism, without having to experimentally cool down to the

lowest measurable temperature. More ambiguities appear between classifications of the AFM and FM/

FiM classes, where magnetic orders exist in both classes but in different formats. This is possibly due to

the difficulty of distinguishing between FiM and AFM from atomic structures, and the energy difference be-

tweenmagnetic structures with AFM and FM/FiM orders can be small. The overall CM suggests good capa-

bility of recognizing potential magnetic orders but slightly weaker ability to identify the exact class. Fig-

ure 5B depicts the CM for the propagation vector classifier. Although the overall performance is hard to

be considered satisfactory, as already mentioned above, the model has the better precision versus the

recall for the non-zero propagation vector.

To analyze the performance of the magnetism classifier in more detail, we visualize the element-specific

test set accuracies in Figure 6A. We observe highest classification accuracy on examples containing ele-

ments commonly found in ferromagnetic materials, such as Fe, Co, and Ni, with accuracies exceeding

76%. In addition, materials containing certain rare earth elements such as Tb, Dy, and Ho are classified

with similar level of accuracy.

To further understand varying accuracies across different elements from the aspect of data abundances, we

show the appearance frequency of each element inside the training set in Figure 6B. The correlations be-

tween high accuracies of some elements and large numbers of training samples containing those elements,

including Mn, Fe, Co, Ni, and Cu, can be readily found. On the other hand, the elements with lower
Table 1. Averaged metrics of the 20 magnetic order classification models in test sets

class Precision recall f1-score

NM 0.91 0.92 0.91

AFM 0.70 0.68 0.69

FM 0.68 0.70 0.69

iScience 25, 105192, October 21, 2022 7



Table 2. Averaged metrics of the 20 propagation vector classification models in test sets

class Precision recall f1-score

Zero 0.70 0.83 0.76

Non-zero 0.79 0.64 0.71
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prediction accuracies are typically less common, such as Ga, Lu, and Re. However, it is worth highlighting

the great performance of some rare earth elements (e.g. Tb, Dy, and Ho) given the small amount of training

samples, this is because they usually coexist with other abundant elements, for example, 65.9% of struc-

tures that contain Tb, Dy, and Ho also contain elements Mn, Fe, Mo, Co, and Ni.

Similar connections between the classification accuracy and the number of training samples can be made

for different crystal systems. In Figure 7A, we show the number of examples of each magnetic order class as

a function of the crystal system of the corresponding structure. Figure 7B indicates that higher appearance

frequency in training data in general leads to higher classification accuracy in test data. Such relationships

suggest that the predictions made by our model are based on not only the atomic species but also their

coordinates and the crystal structure.
DISCUSSION

From the intuition of physics, E(3)NN is an appropriate model to predict magnetic properties for its ability

to encode general atomic structures as input for a graph neural network without losing any spatial informa-

tion and preserve the crystal symmetries. Early works like (Landrum and Genin, 2003) used decision trees to

classify magnetic properties and atomic properties like valance electron orbits of the materials are taken as

inputs. Many prior works like (Nelson and Sanvito, 2019; Bassman et al., 2018; Xie et al., 2021) only use

chemical composition as inputs, the difference is their models only predict properties for two-dimensional

materials with some specific crystal structures, while for most three-dimensional materials, there are much

more space group and various structures. There is one exception (Nelson and Sanvito, 2019) that only en-

codes chemical composition but applies to general crystal structures in three dimension. The paper makes

a discussion about adding crystal structures as inputs and trains comparison models containing only a

limited description of the structural information of a compound. The efforts of encoding crystal structures

do not improve performance significantly in their case, one reason as they discussed is feature vectors of

crystal structures being too complicated compared to a limited training dataset. There are also some works

(Lu et al., 2020; Pham et al., 2018; Himanen et al., 2020) that encode partial information of crystal structures

with a simpler descriptor like the atomic adjacent matrix or the orbital field matrix. The matrix descriptors

elegantly encode information related to the pairwise distances but not the relative angles and symmetry

group between atoms. Among these efforts, E(3)NN can encode any crystal structures without losing

the angle and symmetry information as input (e.g. input an *.cif file), thus our model is more general

than most of the previous studies that can predict magnetic order for any crystal structures. The necessity
A B

Figure 5. Confusion matrices for prediction results

(A) Magnetic orders confusion matrix (B) Propagation vectors confusion matrix. The color represents the percentage.

8 iScience 25, 105192, October 21, 2022



Figure 6. Performance on the testing set and sample statistics of the training set for the magnetic order predictions

(A) The testing accuracy of magnetic order classification per element shown in a color map on a periodic table, gray color indicates the element is absent or

insufficient (mean frequency less than 1) in testing sets.

(B) Histogram of frequency each element appears in the training sets. The following elements are grayed out due to their absences or insufficiency in test

compounds: Pd, Th, Re, Yb, Ce, Eu, Os, Ir, Pt, Rh, Ru, and Np.
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A B

Figure 7. Relation between crystal system and prediction accuracy

(A) Number of examples in each magnetic order class as a function of the crystal system.

(B) Comparison between the number of training samples and testing classification accuracy for each crystal system, the

values are averaged over 20 independent models.
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to include atomic structures for prediction can be argued by the facts that somematerials are described by

the same chemical formulas but have different atomic structures, thus completely different magnetic struc-

tures. To further elaborate, it is hard to compare the performance of our model with some prior works that

did not encode crystal structures or used other descriptors to encode, because the training data are

different (most prior works focused on 2D materials (Nelson and Sanvito, 2019; Bassman et al., 2018; Xie

et al., 2021)), and the prediction outputs are different(some prior works predict critical temperatures of

ferromagnetic (Nelson and Sanvito, 2019) or superconducting (Bassman et al., 2018; Konno et al., 2021),

or classify magnetic orders but only between two classes FM and AFM (Acosta et al., 2022)). In order to

make a comparison and show the necessity to include atomic structures, we performed some comparable

models, with only chemical composition as inputs.

The input is an array with 118 or 119 scalars; different models use different inputs between the two

choices as shown in Table 3. The array of 118 scalars is a weighted average of one-hot encoding; the

non-zero Z-th scalar is the ratio of the element with atomic number Z contained in the material. The array

of 119 scalars has an additional last 1 scalar, which is the weighted average of atomic radius; the weight

factors are ratios of each element. We randomly sample 6,147 structures with the ratios AFM:NM:FM/

FiM = 1.2:1.0:1.2, and divide them into training:validation:testing = 0.8:0.1:0.1. We tried different neural

networks including a simple linear model, two dense models, and one convolutional neural net-

work(CNN) model; among all models, after optimizing the parameters, the best averaged accuracy we

get is 69.0%, while the E(3)NN model that encodes crystal structures has an average accuracy of

77.8%. This may suggest crystal structures have a significant influence in predicting magnetic structures.

Another work (Nelson and Sanvito, 2019) mentioned above also did a comparison between models with/

without crystal structures, where encoding crystal structures does not improve accuracy significantly. The

possible reasons are (1)our training dataset is large enough to support complicated feature vectors for

encoding crystal structures, and (2)E(3)NN has a better performance than other descriptors of encoding

crystal structures in (ibid.). In summary, crystal structures are appropriate inputs for magnetic structures

prediction, other inputs are atomic properties related to screened Coulomb interactions, such as atomic

radius, electronegativity, and dipole polarizability that are used in our model, as well as electron orbit

configurations and pseudopotentials.
Table 3. The models with chemical composition and the averaged atomic property as inputs

Models inputs Structures Activation average accuracy

Linear model (119,1) One linear layer: (119, 3) None 59.88%

Dense model 1 (119,1) Linear layers: ð119; 64Þ/ð64; 32Þ/ð32; 3Þ LeakyReLU 53.0%

Dense model 2 (118,1) Linear layers: ð118; 64Þ/ð64; 32Þ/ð32; 3Þ LeakyReLU 69.0%

CNN model (118,1) two convolutional layers and two linear layers LeakyReLU 67.2%

In the CNN model, a max-pooling layer and a LeakyReLU activation follow after each convolution layer, then comes a flat-

tened layer, 2 linear layers with dimensions ð116; 32Þ/ð32; 3Þ. The parameters of two convolutional layers are (in channels,

out channels, kernel size, padding)=(1,2,3,1), (2,4,3,1), the kernel size of max-pooling is 2.
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Figure 8. Outputs of the neural network with testing data as inputs shown in ternary plots, points represent

3-element vector outputs and are colored by their true label: FM/FiM(blue square), AFM(orange round), and

NM(green diamond)
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Overall, we present a machine-learning-based magnetism classifier that takes crystal structure as input and

basic magnetic structure information as output. Despite extensive training, it seems that the prediction of

magnetism hits a performance barrier, except for the non-magnetic class. This brings up the fundamental

query on magnetic representation: besides the atomic species, the interatomic bonding, and the crystal

symmetries, there might be some additional information still at large that can capture the essence of

magnetism.We anticipate that finding proper magnetic representation can significantly boost the machine

learning on magnetic materials research and shed light on strongly correlated electronic materials in

general.

Limitations of the study

As mentioned above, our magnetic order classifiers show excellent separation between magnetic

(including FM/FiM and AFM) and non-magnetic orders, but more ambiguities between classification of

the AFM and FM/FiM classes. To discuss this further, particularly to see whether the FiM is preferably as-

signed to the FM or AFM class, Figures 8 and 9 show the 3-element vector outputs of the neural network

before taking argmax function in a ternary form, with testing data as inputs. The closer a point is to a corner

of the triangle, the more likely the predicted label is the corresponding class of that corner. We color the

points with their true label to show distinction. Figure 8 explains that the testing outputs with true labels of

AFM and FM/FiM distribute along the edge connecting AFM and FM/FiM classes and do not distinctly

separate from each other, which causes the ambiguities in the classification. The data with true label of
Figure 9. Outputs of the neural network with testing data as inputs shown in ternary plots, points represent

3-element vector outputs and are colored by their true label: FM(purple square) and FiM(blue diamond) data

iScience 25, 105192, October 21, 2022 11



Table 4. m[ is the up total magnetization, we set the threshold to be the ratio between net magnetization and up

magnetization

Threshold
����m[ � mY

m[

���
�

0% 1% 2% 3% 5%

Accuracy 0.76 0.69 0.65 0.68 0.67

All training is performed with a fixed ratio between the number of data in each label: NM:AFM:FM = 1:1:1.1(2537:2537:2791).
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NM stay close to the NM corner and away from the other two classes. Figure 9 suggests that our choice to

consider FM and FiM order jointly in the class FM/FiM is reasonable, since the distribution of FM and FiM in

the ternary plots is similar, and our classifiers treat atomic structures with FM and FiM orders similarly.

Another factor that could cause ambiguity between AFM and FM/FiM classes is the magnetization cutoff

between AFM and FiM classes. The magnetic order labels are assigned based on the DFT-calculated mag-

netic moments and total magnetization; while both FiM and AFM hold magnetic moments non-zero and

with different signs, there is a cutoff of total magnetization to distinguish the two classes: zero for AFM,

greater than zero for FiM. The models in the main text are trained with this cutoff strictly zero; however,

there are materials in our dataset with small but non-zero magnetization. To compare how the change

of this threshold affects accuracy, we changed the threshold for labeling FiM/AFM to be non-zero and re-

trained our model; the prediction accuracy is shown in Table 4. When the threshold is set at zero, our model

reaches maximal accuracy.

Another limitation of magnetic order prediction comes fromMaterials Project, first, it is a DFT database, so

it has its own limitation; second, given the limited amount of AFM structures and our intention to keep a

balanced ratio between different labels for training, the number of materials for each training is limited

to around 4,869. By applying a Hubbard-like correction to localized d orbitals to correct self-interaction er-

ror, GGA + U has better performance (fits better with experiments) than generalized gradient approxima-

tion (GGA). There is currently no perfect DFT functional as they are all approximations to the complete set

of physics that define materials phenomena, so does the GGA + U calculations. Our model is trained based

on the DFT results from Materials Project; there is no guarantee that DFT results are the same as experi-

ments. Admittedly, methods beyond DFT + U, such as QMC, DMRG, DMFT, or exact diagonalization,

do exist; however, those methods have exceedingly high computational costs with at least N6 to expðNÞ
complexity, thereby still hard to compute the large volume of real materials. In light of this, DFT + U bal-

ances the accuracy with the computational cost, which can generate large training data to be used for ma-

chine learning. To show the effect of the number of training data on model performance, we trained our

model with less training data. The average accuracy with the current amount of training data is 77.8%, if

reducing the amount to 3=4; 1=2; 1=4 of the current choice while keeping the ratios between labels the

same, the average accuracy reduces to 70.8%, 66.7%, and 65.4%. It is likely that if we have more training

data available, a higher accuracy could be reached.

For the propagation vectors, we ultimately aim to predict the number of propagation vectors and the

magnitude and direction for each. We only achieve partially this by predicting whether the propagation

vector is zero or non-zero. The challenge comes from the constitution of the MAGNDATA database, almost

half of materials in MAGNDATA have a single zero(null) propagation vector. Among these with non-zero

propagation vectors, the number of propagation vectors can be one or multiple, and each propagation

vector can point at a high-symmetry point or just a general position in the Brillouin zone. The situations

for non-zero propagation vector are complicated and there are not enough data to perform training

and get an accurate prediction. Besides, we exclude incommensurable magnetic structures in training

and prediction. The magnetic unit cells for incommensurable magnetic structures are infinitely large,

and in E(3)NN graphs, each node represents an atom and is expected to carry information about magne-

tism on that atom after training, thus it is unlikely a finite graph model can characterize incommensurable

structures with infinitely large unit cells.

Given the above limitation, we think our model will be improved in future studies if (1) beyond the properties

shown in Figure 2B, a thorough search over more atomic properties to be encoded as inputs is performed,

some candidates are electron configurations of atoms and pseudopotentials. (2) Instead of training themodel

with oneoutput label like themagnetic order or the propagation vector, one can use the localmagnetizationof

each atom as training labels and define a loss function to compare magnetization on every atom.
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