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Introduction
Machine learning has been highly successful in boosting the re-

search for neutron and X-ray scattering in the past few years [1, 2]. For 

diffraction, machine learning has shown great promise in phase map-

ping [3, 4] and crystallographic information determination [5, 6]. In 

small-angle scattering, machine learning shows the power in reaching 

super-resolution [7, 8], reconstructing structures for macromolecules 

[9], and building structure-property relations [10]. As for absorption 

spectroscopy, machine learning has enabled the rapid inverse search 

for optimized structures [11, 12] with improved spectral interpretability 

[13, 14]. Overall, as a data-driven approach, the success of the machine-

learning-based scattering analysis depends on a few criteria, including:

• Quantity of available experimental data, and feasibility to extract 

certain data labels;

• Quality of experimental data that can separate the intrinsic effect 

(e.g., materials properties) from extrinsic influence (e.g., instru-

mental or data artifacts);

• Feasibility to generate high volume of computational data;

• Accuracy of computational data that can simulate the experimen-

tal data.

Based on these criteria, it is understandable that not all scatter-

ing techniques are equally feasible for carrying out machine learn-

ing. For instance, small-angle scattering and X-ray absorption (XAS) 

have become two frontiers in applying machine learning techniques, 

thanks to the low data dimension (1D data), relatively low technical 

barrier on performing measurements, and high feasibility to generate a  

large volume of computational data that can faithfully represent the  

experiments.

In general, low-dimensional data are relatively easier to use for ma-

chine learning training. However, some of the most powerful scattering 

techniques lie in a higher data dimension, such as inelastic scattering, 

which resides in the 4D momentum–energy (k × E) space. This poses 

a dilemma in using machine learning on scattering spectroscopies: the 

more powerful a scattering technique is, the more likely the technique 

is in a higher data dimension, and the more challenge it will face in per-

forming machine learning. Table 1 lists a few common scattering and 

spectroscopy techniques that are ranked by the feasibility to perform 

machine learning, based on the above criteria.

From Table 1 we see that the t-axis generally increases the challenge 

of machine learning training with higher dimensional data to analyze 

but lower amount of available training data. To address this challenge, it 

is worthwhile mentioning that even without any training data, a branch 

of machine learning, termed scientific machine learning [15], can be 

adopted to perform time-resolved data analysis. In one work by Chen et 

al. [16], it is shown that scientific machine learning has broken the chal-

lenges to investigate frequency-resolved phonon thermal transport by 

analyzing time-resolved diffraction patterns. By making an assumption 

that the phonon transport can be described by the Boltzmann transport 

equation (BTE), and linking the atomic displacements to the Debye-

Waller smearing of diffraction intensities, it shows the possibility to 

acquire high-dimensional frequency-dependent thermal transport from 

time evolution of diffraction intensities, mainly phonon relaxation times 

and interfacial thermal transmission coefficients. This enables a direct 

reconstruction of real-space, real-time, frequency-resolved phonon dy-

namics across an interface of the heterostructure with sub-ps resolu-

tion. Given the fact that many time-resolved scattering techniques are 

described by a certain dynamical equation, scientific machine learning 

is anticipated to play an increasingly important role in analyzing time-

resolved scattering data.

Beyond that, even at low data dimensions, there are still outstanding 

problems that exist. In this perspective, we introduce three such prob-

lems, including the structure determination with defects or magnetism, 

the learning of magnetic excitations, such as phonons and magnons, 

and the prediction of the microscopic interaction in strongly correlated 

electron systems.
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Defect and magnetic structure determination
The structure determination for small-angle scattering (includ-

ing SANS and SAXS) and reflectometry (including NR and XRR) is 

relatively straightforward for three reasons. First, the data dimension 

is low. Except for some rare cases, such as the magnetic vortices lat-

tice using SANS, which has 2D data [17, 18], most of the small-angle 

scattering and reflectometry data can be considered as 1D curves after 

data reduction. Second, the computational cost to generate the spectra 

is low, without the need of atomistic-scale structure details. Third, the 

computational data can faithfully represent the measured experimental 

data directly. This is because small-angle scattering and reflectometry 

probe the course-grained, nanoscale structures, where the structure pa-

rameters in the materials are abstracted into a few parameters.

However, significant challenges still remain in X-ray and neutron 

diffraction. As a probe that detects the atomistic-scale structure, dif-

fraction data is generally 3D in nature. Moreover, the atomic structure 

has a design space that can grow exponentially with the unit-cell size. 

In fact, the number of possible structure C for a unit cell with N atoms 

and volume V can be written as [19]

   (1)

where δ ~1Å is the discretization parameter. This can easily lead to 

astronomically large combinations of possible structures. Even for po-

tentially stable structures with structure relaxation, the number of local 

minimal energy configurations still grows exponentially with N.

Besides the structure combinatorics, even within a fixed crystalline 

solid, the structure determination can be significantly hampered due 

to the crystallographic defects. The point defects will slightly change 

the unit cell but only lead to small weight in diffraction patterns [20], 

particularly at the low-concentration regime, while the line defects and 

planar defects such as dislocations and grain boundaries can be consid-

ered a multiscale problem that will alter both atomistic and mesoscopic 

structures. Analyzing the defect information beyond current refinement 

schemes poses another grand challenge.

To address the grand challenge, efficient generation of materials 

provides an alternative but promising approach through generative 

models. Rather than conventional supervised learning that validates 

targeted materials property by inputting a fixed material, in genera-

tive models, new molecules and new crystals can be generated directly 

from, say, random noises after the learning stage. Generative adver-

sarial networks and variational autoencoders represent two approaches 

of generative models, where the former performs discriminator opera-

tion against the “real data”, i.e., the training set, while the latter per-

form one-shot generation through the latent space encoding and latent 

space manipulation. One of the more recent developments is the de-

velopment of diffusion models [21]. In a diffusion model, the data are 

gradually turned into noise, and neural networks are used to invert the 

procedure in a step-by-step manner, where each step of inversion, the 

data becomes less noisy. The diffusion models allow the fine tuning at 

each step and gains flexibility toward constrained optimization. Re-

cently, the diffusion model has been implemented in conjunction with 

variational autoencoder to generate crystalline materials with targeted 

performance [22].
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Table 1: List of common scattering and spectroscopic techniques and their ranked feasibility to perform machine learning, with easy (green), me-
dium (yellow), and hard (brown) levels.

Space Neutron X-ray

r Neutron imaging X-ray microscopy

k (Polarized) reflectometry (PNR) X-ray reflectometry (XRR)

Small-angle neutron scattering (SANS) Small-angle X-ray scattering (SAXS)

Neutron diffraction X-ray diffraction (XRD)

E Vibrational spectroscopy X-ray absorption (XAS)

Resonant inelastic X-ray scattering (RIXS)

k t× Time-resolved diffraction/scattering X-ray photon correlation spectroscopy (XPCS)

E k× Inelastic neutron scattering (INS) Angular-resolved photoemission (ARPES)

Quasi-elastic neutron scattering (QENS) Non-resonant inelastic X-ray scattering (IXS)

E t× N/A Coherent diffraction imaging

E k t× × N/A Time-resolved (tr) XAS, tr-RIXS
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Beyond atomic and defect structure determination, a third chal-

lenge here is magnetic structure determination. Even with a well-de-

fined atomic structure, adding magnetic degrees of freedom at least 

adds the spin vectors to the magnetic ions onto a given magnetic atom. 

The existence of the rich magnetic structures with larger magnetic unit 

cells, nonzero magnetic propagation vectors, and incommensurate 

magnetic structure all add significant complexity to the solution space 

of magnetic structures.

Overall, despite the straightforward calculation from atomic or 

magnetic configurations to diffraction patterns, the inverse problem of 

solving atomic, defect, and magnetic structure has posed a grand chal-

lenge due to the large dimension of the parameter space.

To tackle the challenges, for the defect structures, it is possible to 

only focus on one of a few materials and span the defect parameter 

space instead of starting from a universal defect predictor. Besides, 

since the structure factor S(Q) for a perfect crystal is a series of delta-

function, while the structure factor for disordered solid is continuous in 

the reciprocal space, it is crucial to find out the proper defect descriptor 

in reciprocal space or other latent spaces. For instance, the environ-

ment in grain boundaries can be captured through the features from the 

smooth overlap of atomic positions [23]. As to the magnetic structures, 

it is important to utilize the experimental magnetic structure data as the 

training set and adopt approaches that can augment the data set, such as 

through crystallographic symmetry [24].

Learning and predicting elementary excitations
One of the main powers of neutron and X-ray scattering measure-

ments is to directly measure elementary excitations, such as phonons 

[25, 26], magnons [27, 28], and spinons [29, 30]. Compared to diffrac-

tion problems where the solution space of the inverse problem is huge, 

for elementary excitations, the main bottleneck lies in the huge compu-

tational cost even for the forward problem. For instance, to perform the 

phonon dispersion calculation with first-principles density functional 

perturbation theory (DFPT), the computational cost C is on the order 

of [31]

 

C R NIFC~ 3 43×
 (2)

where R qIFC ~ /2� �  is the interatomic-spacing range, factor “3” ac-

counts for the three phonon polarization modes, and N is the number of 

atoms in the unit cell.

Machine learning methods can be used to accurately predict pho-

non bandstructures without the high computational cost of ab initio 

methods. One method is the Gaussian approximation potential (GAP) 

[32], which has shown to be accurate in predicting the lattice exci-

tations of crystalline phases in addition to phases that may have va-

cancies or other defects [33]. This machine learning-based method is 

faster than typical ab initio methods, and more accurate than empirical 

potential (EP) methods [34]. Beyond the GAP approach, by using the 

crystallographic symmetry and symmetry-preserved neural networks, 

Chen and Andrejevic et al. demonstrated a direct prediction of phonon  

density-of-states from atomic coordinates [35]. With faster simulation 

of phonons, it will become more feasible to train machine learning 

models to identify and predict lattice excitations.

There is also a large computational cost to predicting magnetic exci-

tations in quantum magnets. Even a relatively simple Hamiltonian for a 

magnetic system with exchange interaction such as

 

H J S Sn n i j i jn
�� �� �, i

 
(3)

where the sum includes up to nth-nearest-neighbor exchange cou-

pling parameters J
n
 can lead to intricate magnetic excitations. Many 

magnetic materials also include additional terms, such as magnetic an-

isotropy, dipolar interactions, and the Dzyaloshinskii-Moriya interac-

tion. Each of these interactions serves as an additional dimension in 

the parameter space that needs to be accounted for in simulations in the 

forward problem, and machine learning in the inverse problem. Once 

a model Hamiltonian is identified, a common method of simulating 

measurable quantities is with Monte Carlo (MC) methods. For each  

(classical) MC simulation, a particular set of randomized parameters 

is selected, but then the simulation must relax from an initial config-

uration to the final ground state that will eventually be compared to 

experiments. For example, Samarakoon et al. use 1000 Monte Carlo 

simulations of a magnetic Hamiltonian, which includes three nearest-

neighbor couplings and dipolar interactions to gain insight into spin ice 

Dy
2
Ti

2
O

7
 by using an autoencoder [36].

One way to approach the challenge of generating a large enough 

number of magnetic system simulations to feed into a machine learn-

ing model is to actually use machine learning to accelerate the Monte 

Carlo simulations themselves [37, 38]. Liu and Qi et al. approach 

speed up their magnetic simulation by an order of magnitude through 

the use of a “self-learning” Monte Carlo method [37]. This method 

runs a simulation of a local update and then learns trends about the 

update process to guide global configuration updates. By acceler-

ating simulations of spin Hamiltonians, it has shown great power in 

predicting regions near the phase transition, and will become easier 

to extract parameters from experimental data and predict materials’  

magnetic excitations.

Prediction of strongly correlated systems
Another challenge that is crucial to tackle but rarely accomplished 

is to predict strongly correlated systems with machine learning. 

Strongly correlated systems [39] are highly nontrivial due to the in-

terplay between charge, spin, orbital, and lattice degrees of freedom; 

the computational power required for predicting a strongly correlated 

system usually grows exponentially with system size (see Table 2 for 

more details). Experimental measurements are restricted to limited 

observables in the vast Hilbert space and the inverse problem is chal-

lenging for it is a task of solving a system of exponentially growing 

underlying dimensions with observables that grow only polynomially 

with system size.
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On the machine learning side, even analyzing polynomially 

growing experimental data is challenging since they are high-di-

mensional in nature. Many powerful methods to measure strongly 

correlated systems, such as RIXS, INS, APRES, even tr-ARPES, 

tr-RIXS, are very high-dimensional; for example, INS of three-di-

mensional materials are four dimensions in momentum–energy (k × 

E) space, while tr-ARPES in momentum–energy–time (k × E × t) 
space. This posed an intrinsic challenge for both data processing and 

inverse problem. On the computation side, there are some external 

challenges in spectra calculation of non-equilibrium systems, while 

pump-probe techniques that drive the system out of equilibrium and 

induce collective excitations play important roles in the experimen-

tal studies of strongly correlated systems. Taking tr-RIXS for ex-

ample, in order to mimic the resonant scattering process and explore 

rich physics such as multi-particle excitations, one needs to take into 

account the finite lifetime of the intermediate state and higher-order 

correlations beyond linear response [40], leading to a computational 

complexity of O ( )Nt
4

, where Nt is the number of evolution steps in 

time. Nevertheless, there are increasing developments [41] in the 

theory of calculating tr-RIXS [42] and tr-ARPES [43] spectra. These 

simulation results can benefit the training process and be extended 

to analyze real experimental data.

To tackle the challenge, instead of spanning the large parameter 

space over all possible regions, what can be done is to focus on one 

material, and span the parameter space through external control knobs.  

This follows the same philosophy as current research on machine 

learning of strongly correlated systems, which usually focuses on a 

simplified toy model with only a few parameters, while targeting the 

spectra of one realistic material can lead to more practical applica-

tions. More importantly, one can perform joint analysis with different 

kinds of spectra; for example, learning the effective interaction from 

both INS and APPES data. This effectively enlarges the information 

contained in the input data with a relatively small cost, since differ-

ent spectra contain information on different degrees of freedom. Such 

study is still in its infancy and is highly promising in the future.

Outlook
In this perspective, we introduced three categories of materials re-

search problems, which may meet significant challenges for machine 

learning, but may also benefit most when performing machine learning 

properly. The three problems, predicting structures, predicting elemen-

tary excitations, and predicting correlated systems, are all inverse prob-

lems that aim to learn materials information from neutron and X-ray 

scattering data. However, they differ from the forward problems:

Table 2. Common computational approaches for strongly correlated systems.

Essence Pros Cons

DFT-based 
method

DFT + U Pseudopotential +  
correction

•  Straightforward correction to 
first-principles simulations

•  Low computational cost O(N3)

-  Lack of static correlation
-  Poor experimental comparison

Green’s func-
tion perturba-
tion theory

GW Self-consistent 
correction of 
Green’s function

•  Capturing correlations beyond 
the static limit

•  Portable to DFT and wave-
function methods

-  Complication for multi-particle excita-
tions

-  Restricted to weakly correlated or 
high-dimensional systems

DMFT

Wavefunction-
based method

Hatree-Fock 
and post-HF 
methods

Exact or 
 variational wave-
functions and 
 density  matrix in 
 ensembles

•  Capturing all correlation and 
entanglement effects allowed 
in a given subspace

•  Good mathematical structure 
for variational principles

•  Some methods are accurate or 
asymptotically accurate

-  Exponential complexity (at least 
superlinear)

-  Restricted to small or low-dimensional 
systemsExact Diago-

nalization

DMRG and 
Tensor net-
work

Monte Carlo Quantum 
Monte Carlo

Importance 
sampling of 
 configurations 
or auxiliary 
fields

•  Accurate except for a statisti-
cal error

•  Polynomial scaling with 
system size

-  Inefficient at low temperatures
-  Restricted to thermal equilibrium
-  Fermion-sign problem for (quantum) 

fermionic systems
Classical 
Monte Carlo
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Structure prediction: efficient and reliable forward calculations, 

(but exponentially large space).

Elementary excitation prediction: inefficient but reliable for-

ward calculations.

Correlated system prediction: inefficient and less-reliable for-

ward calculations.

In light of this, running more forward calculations, adopting a more 

efficient way to run forward calculations, and new ways to perform 

measurements to learn more information, become the natural and po-

tentially unavoidable setups to drive the fields forward.
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