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Abstract
This paper presents a roadmap to the application of AI techniques and big data (BD) for
different modelling, design, monitoring, manufacturing and operation purposes of different
superconducting applications. To help superconductivity researchers, engineers, and
manufacturers understand the viability of using AI and BD techniques as future solutions for
challenges in superconductivity, a series of short articles are presented to outline some of the
potential applications and solutions. These potential futuristic routes and their
materials/technologies are considered for a 10–20 yr time-frame.

Keywords: applied superconductivity, artificial intelligence, big data, deep learning,
machine learning, neural network
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1. Introduction

Although the superconductivity phenomenon has been dis-
covered more than a century ago, and despite the signific-
ant advantages—such as lower losses, higher efficiency, com-
pact size, lighter weight, higher magnetic field, and power
density—that superconducting technology offers over the con-
ventional counterparts, many superconducting components
and applications are at low technology readiness level and
not even near being commercialised. Apart from magnetic
resonance imaging (MRI) and nuclear magnetic resonance
which are already fully commercialised in the manufactur-
ing stage—because the level of magnetic field that they need
is not simply achievable with any conventional technology—
no other superconducting device is commercialised at a high
manufacturing production rate, and most of these devices are
in proof-of-concept or in fabricating demonstrator stage. The
reasons are including high total ownership cost, high level-
ised cost of energy, not knowing all technological limits in
manufacturing levels, especially for real scale devices, reli-
ability concerns especially when working at cryogenic tem-
perature together with a cooling system, hesitancy of some
industries regarding accepting a new technology against a
well-demonstrated conventional one, among others [1–6].

There aremany challenges related to superconducting com-
ponents, devices, and applications which need to be addressed
to pave the way for their commercialisation, especially with
the new emerging opportunities in applications such as wind
power, fusion industry, electric transportation, and hydrogen-
powered aircraft. These challenges can be generally categor-
ised into different stages such as in superconductor/supercon-
ducting device production, design, manufacturing, condition
monitoring, operation, and maintenance stages. The experi-
ence of the last 25 yr in the superconducting community and
also what we can learn from how other technologies evolved
in a much shorter time frame, prove that for addressing many
of these challenges we would need to take advantage of other

intelligent techniques, and disruptive technologies and intro-
duce them into the superconductivity. One of the popular tech-
niques which is used as a very successful tool to resolve the
challenges of many other industries/technologies is artificial
intelligence (AI) [7–11].

AI can resemble human intelligence and can be used
for learning a process, finding a pattern, and making a
decision [12]. AI techniques were successfully implemented
in many industries including automotive, aerospace, and med-
ical, among many others, some of which have higher or equal
importance, reliability requirements and risk concerns com-
pared with superconducting applications. AI techniques can
be used for modelling and simulation, design improvement
or optimisation, hot spot detection, fault detection and dis-
crimination, cost reduction, loss and efficiency improvement,
condition monitoring and operation, improving manufactur-
ing yield, quality control and assurance, sensor and testing
improvement, etc [12]. AI techniques can promise and offer—
compared with other recently implemented methods (e.g.
mathematical and look-up table approaches)—faster response,
less false outcome, a higher chance of reaching the optimal
solution, considering interdependencies of the inputs, finding
hidden patterns, and above all, real-time implementation/ap-
plication [13]. Real-time applications usually end up produ-
cing big data (BD) which again needs intelligent approaches
to be handled [11–13].

In this paper, a roadmap to the application of AI and BD for
different modelling, design, monitoring, and manufacturing
and operation purposes of different superconducting applic-
ations, is presented. To help superconductivity researchers,
engineers, and manufacturers understand the viability of using
AI and BD techniques as future solutions for challenges we
presently face in superconductivity, a series of short articles
are presented to outline some of the potential applications and
solutions. These potential futuristic routes and their mater-
ials/technologies are considered/suggested for a 10–20 yr
time-frame.
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2. Intelligent condition monitoring and design
optimisation of superconducting propulsion
machines using AI-based techniques for future
cryo-electric aircraft

Mohammad Yazdani-Asrami and Wenjuan Song

Propulsion, Electrification & Superconductivity Group, James
Watt School of Engineering, University of Glasgow, Glasgow
G12 8QQ, United Kingdom

Status

Cryo-electrification—which is the type of electrification
enabled by the combination of cryogenics and superconduct-
ing technologies—seems to be the disruptive technology and
a way forward for future aerospace electrifications. To realise
emission-free aircraft, the electrical devices (in propulsion and
power system) must become competitive with existing con-
ventional systems, and to do so, improvements inmany aspects
are needed such as weight, size, efficiency, power density,
voltage level, insulation, maintenance, reliability, safety, and
cost [1, 14, 15].

Superconducting rotating machines provide one of the
promising options for the propulsion systems in future
cryo-electric aircraft, especially with the recent development
towards the integration of hydrogen technology into modern
aviation. They exhibit great advantages in reducing size and
weight, and increasing efficiency and power density compared
with conventional machines [1, 14, 15].

To realise superconducting machines for the propulsion
system of cryo-electric aircraft, high specific power density
(SPD) i.e. power divided by the weight, with high efficiency
in a compact size is preferred, which can be achieved by optim-
ising the machine construction and manufacturing processes.
In addition, safety is a priority in aircraft electrification, there-
fore it would be crucial to monitor and detect any incipient,
short circuit, demagnetising, hot spot, mechanical damage,
drive system faults, and other types of faults in the supercon-
ducting machine at early stages before they reach to a cata-
strophic level.

AI techniques can provide solutions to effectively develop
highly intelligent optimisation procedures for designing the
superconducting machines in cryo-electrified aircraft, and
accurate real-time condition monitoring towards achieving the
highest safety standard using AI regression and estimation
tasks [16]. AI not only help design and operate a more intel-
ligent superconducting propulsion machine but also assist its
prototyping and manufacturing to reduce material waste, lev-
elised cost of production, and manufacturing tolerances.

Current and future challenges

Some challenges caused superconducting machines to not
be commercialised yet, including requirements and complex

design of the cooling system, high cost of superconducting
tapes/wires/bulks, complex machines’ structures, high manu-
facturing cost, thermal sealing of different moving and static
parts at room and cryogenic temperatures, system-level mod-
elling and integration, quench protection, liquid hydrogen tank
design optimisation, and low end-user interests [1].

In the following, some current and future challenges for
superconducting machines used in the aviation sector—that
can be addressed by AI techniques—are discussed:

SPD and efficiency. One of the major challenges to devel-
oping electric aircraft in a larger fleet is the low SPD of exist-
ing conventional electric machines (e-machines), limited to 5–
10 kW kg−1 at low speed and low size. However, for future
cryo-electric aircraft with hydrogen as fuel/coolant and pos-
sibly with the fuel cell as another source of electricity, the
SPD of e-machines should be well above 16–20 kW kg−1 [14,
17]. This means that e-machines should be built either with
higher speed, higher electromagnetic (EM) loading, or lower
weight and size of the iron core, supports, and other assembly
parts. This implies that the construction of a superconducting
e-machine and its EM circuit (armature, field, and core) need
to be optimally designed to maximise the power density.

The high efficiency of the superconducting machine is
another challenge. Losses including AC loss from the wind-
ings should be minimised, whilst maintaining low operation
and fabrication costs. Superconducting machines in future
cryo-electric aircraft will be fabricated in the full or fraction
of MW-scale, therefore, even a percent loss means bulky cool-
ing power and consequently higher weight for the cooling
system. Therefore, electro–thermo-mechanical optimisation is
required to guarantee minimum possible loss and heat load.
Online and real-time estimation of the losses in e-machines
should be considered to make sure the efficiency limit is
met [18].

Condition monitoring and reliable operation. Safe and reli-
able operation holds the top priority for electric aircraft. Cryo-
genic temperature makes the operation of aircraft more com-
plicated and hence, complexity arises reliability concerns,
especially when the technology is not even well commer-
cialised for terrestrial applications and its technology read-
iness level is relatively low compared with well-established
conventional technologies. Superconducting machines may
face a variety of faults including electrical, mechanical, cryo-
genic, and thermal faults such as incipient inter-turn faults,
short-circuit of windings, demagnetising in magnets or bulks,
winding hot spots, bearing faults, static, dynamic, and mixed
eccentricity faults, winding deformation, insulation fatigues
and faults, drive system faults, cooling system failures, among
others. However, at the moment there is no evidence of
any monitoring system neither conventional nor intelligent
specifically designed for a superconducting propulsion
system.
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Figure 1. AI techniques can be used to optimally design superconducting machines.

Advances in science and technology to meet
challenges

For design optimisation of machine construction, meta-
heuristic and swarm-based algorithms will be used aiming
for higher SPD, lower AC loss, higher efficiency, and lower
cost (as shown in figure 1). The challenge is deriving accur-
ate sizing equations and considering real-world trade-offs
together with an appropriate multi-objective fitness function.
The objective function could be AC loss, size, heat load,
cost reduction, or a combination of them. Also, the optimal
design of the cryostat will reduce the SPD of the whole sys-
tem. In addition, techniques based on reinforcement learning
can be adopted to develop automated design and modelling
of superconducting machines. Reinforcement learning tech-
niques can construct a policy with artificial neural networks
(ANNs) that determines the optimal actions for a state of
modelling.

Many AI methods combined with signal processing tech-
niques can be used for condition monitoring and fault detec-
tion purposes (see figure 2), as a classification, clustering,
and discrimination task. Some of these expert systems, signal
processing, and AI techniques are as follows: wavelet trans-
form, Hilbert–Huang transform, S-transform, support vector
machine (SVM), adaptive neuro-fuzzy interference system,
ANN, fuzzy system, long short-term memory (LSTM), deep
learning (DL)methods usingmany layers of ANN such as con-
volutional and grid neural networks (NNs), etc. It is worth not-
ing that each of the AI-based techniques would be a proper
candidate to find a specific type of fault, and for doing that
extracting the correct feature from input data (current, voltage,

vibration, back EMF, etc) is highly crucial27. Time, frequency,
or time-frequency domain data can be used to establish such
intelligent condition monitoring techniques/systems. In addi-
tion, stacked autoencoder-based approaches can be designed
and implemented for real-time condition monitoring, for fault
detection, and anomaly detection (for quenches of windings
and bulks) of superconducting machines.

The stacked autoencoder-based techniques can automatic-
ally set multiple baselines as the boundary between normal and
abnormal/faulty conditions.

For optimal design of cooling systems, multi-objective
swarm intelligence-based optimisers would be great tech-
niques to find optimal parameters of a cryogenic cooling sys-
tem such as flow rate, pressure, number and type of cold head,
size of the heat exchanger, amount/thickness of thermal insu-
lation, etc. Fitness function can be considered in such a way as
to minimise the weight, size, and/or cost of the cooling system
and/or to maximise its efficiency, reliability, and safety.

Parameter estimation of superconducting machines for
drive system adjustment can be done using meta-heuristic or
evolutionary algorithms. The optimal control of the propulsion
unit depends on properly driving motors under different oper-
ating conditions. Most controlling techniques rely on machine
parameters, and thus, precise estimation of them at the begin-
ning of the installation is important. Estimation of the super-
conducting machine parameters is more challenging than the

27 There are many different features that could help finding a specific fault
which we could not state here in this roadmap article because of page limit.
For more information regarding this point, please directly contact the corres-
ponding author.
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solution for the design, manufacturing, monitoring, and main-
tenance issues of superconducting machines in future cryo-
electric aircraft [20]. CPS presents a higher level of integration
and coordination between physical systems and computa-
tional models through coupling sensor outputs and simula-
tion routines. AI can link with sensor data in a real-time man-
ner. CPS-based digital capabilities with existing architectures,
systems and processes, the coordination of several systems
and applications require the integration of recently emerging
technologies, which are giving rise to the current and future
industrialisation challenges for the low carbon cryo-aviation.
In cryo-electric aircraft, these technologies, i.e. AI with DT
in CPS, improve the design, control, and protection of the
superconducting drivetrain and propulsion systems, so that the
reliability, efficiency, and stability of aircraft will be maxim-
ised. In addition, if a DT is developed for the superconducting
machine of an aircraft, it will provide a platform for research
and training for professionals and engineers in the aviation
industry.

Concluding remarks

Cryo-electric aircraft which take advantage of both cryogenic
and superconducting technologies seem to be one of the most
promising solutions to realise zero-emission hydrogen-based

aviation. Superconducting propulsion technology has the
potential to provide high SPD beyond 20 kW kg−1 on the
MW scale, with efficiency above 99%. However, challenges
related to superconductor performance, machine cost, cooling
system requirements and weight, quench and fault monitor-
ing, and finding innovative EM designs to lower the weight
and size of the machine are major challenges against their
potential to be integrated into hydrogen- and electric-based
aircraft. AI techniques can address some of the aforemen-
tioned challenges to make superconducting propulsion units a
competitive option against other technologies for future elec-
tric aircraft. AI-based techniques can help optimally design
a superconducting machine to increase its power density and
efficiency simultaneously. In addition, condition monitoring
and fault prognostic techniques can be established based
on AI approaches for both the machine and its cryogenic-
temperature drive system.
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3. AI-assisted real-time modelling of HTS devices
and systems

Antonio Morandi1 and Giovanni De Carne2

1 Department of Electrical, Electronic, and Information
Engineering, University of Bologna, 40136 Bologna, Italy
2 Karlsruhe Institute of Technology, Karlsruhe, Germany

Status

Real-time simulation/modelling is a powerful tool to assess
the performance of innovative power equipment such as large-
scale superconducting power devices under realistic operat-
ing conditions [22], thus accelerating the commercialisation
and market introduction of the tested technologies. Through
digital simulators, complex electrical grids can be simulated
in real-time, and the performance of the tested technology can
be validated through power hardware in the loop (PHIL) test-
ing [23]. More in particular, in PHIL testing the behaviour of
the simulated grid is emulated using power amplifiers that can
produce the full voltage, current, and power required by the
physical device under test (DUT), as it is schematically shown
in figure 3. PHIL systems allow reproducing a wide variety of
operating conditions in the laboratory, including contingen-
cies and faults, allowing to assess the performance (and lim-
itations) of the DUT without the need for long and extremely
costly in-field installations that often impact both the layout
and the management of the hosting grid. The real-time mod-
elling of the superconducting devices can also be developed
and validated against the results of the PHIL testing campaign.
This allows forming an integrated real-time modelling envir-
onment, comprising both the hosting system and the tested
technology, that can be used for exploring, under a holistic
perspective, any operating condition that the final-user may
want to investigate, and to gain information on possible oper-
ating conditions of the device that can drive design upgrade
or optimisation. At a more advanced stage of development
of the technology, the real-time model can also be used as a
digital-twin of the physical device that can be run in parallel
during physical operation to compare measured and calculated
data and extract information from possible mismatches due for
example to internal faults, ageing of components or need of
maintenance. AI techniques can greatly assist real-time mod-
elling and PHIL system testing.

Current and future challenges

Digital real-time simulators are high-performance computers
that allow to compute the new status of a simulated sys-
tem (e.g. an electrical grid) within a predetermined time step
(e.g. 50 µs). Typical of these systems are the strict real-time
constraints, requiring that the new system solution must be
delivered within the simulated physical time-step. It follows,
that the size of the simulated system shall be suited to the
available computational power, and mathematical modelling
requiring intense simulation time shall be avoided.

Multiphysics finite element (FE) modelling is an estab-
lished approach for predicting the behaviour of practical
superconducting devices. An alternative to FE models is using
empirical equivalent circuits, with intrinsically reduced calcu-
lation time, but lower predicting capability and accuracy. In
FE models the solution of the interior field problem (distribu-
tion of current density and electric and magnetic fields inside
the superconductor) is first obtained and a variety of other
information, such as AC loss, temperature, voltage, or quench
behaviour, which is of interest for practical applications, are
deduced accordingly [24, 25]. However, a very complex beha-
viour is obtained when dealing with HTS materials due to
high non-linearity and hysteresis, strong anisotropy, temper-
ature dependence, high aspect ratio, 3D configurations and
complex composite structure of practical wires and tapes. As
a result, FE models suffer from large execution time and com-
putation burden, which makes them incompatible with digital
real-time simulator applications that, as mentioned above, are
limited by sharp real-time constraints. The current challenge
is to reduce the complexity of FE models, to make them suit-
able for real-time applications. One approach to reach this
goal is to carry out a specialised research effort aimed at
introducing specialised methodologies for reducing the stor-
age and inversion requirement of the FE problem. Along this
line, coupling finite-element method (FEM) with PEEC meth-
ods or homogenisation and multi-scale methods have been
recently introduced [26, 27]. Homogenisation consists ofmod-
elling a subdomain made of different composite HTS tapes as
a homogeneous, though anisotropic, material. In multi-scale
methods, the modelled system is split into a set of localised
detailed models that are individually solved while interpola-
tion is used to guess the solution on the other subdomains that
act as magneto-static source terms only. As a result, the size
and the CPU time of the problem are greatly reduced and real-
time modelling can be obtained, for example in the case of
slow ramping of large HTS magnets in which the 1D approx-
imation is assumed for the HTS tapes [28]. An alternative to
FE models is using empirical equivalent circuits, with intrins-
ically reduced calculation time It must be pointed out, how-
ever, that these advantages come at the cost of a lower accur-
acy of the results. To achieve real-time computation capability
in the wide variety of 3D problems occurring in practical HTS
applications, while maintaining accuracy, substantial innova-
tion still need to be introduced in the calculation approach and
AI can play a role in this [12, 17, 29], especially when system
level analysis must be carried out, as it is discussed next.

Advances in science and technology to meet
challenges

To address the challenge, this section explores the poten-
tial of AI-based models, that, trained on off-line FE simu-
lations, represent a low computation-time alternative to on-
line FE models for real-time simulations. In the example of
figure 4, an HTS-based superconductingmagnetic energy stor-
age (SMES) system supports the grid frequency control dur-
ing large disturbances. A complete FE model of the device

9
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approach described here for SMES can also be applied to a
wide range of power HTS apparatus including, transformers,
power cables, fault current limiters, and rotating machines.

Concluding remarks

Real-time simulation and PHIL testing are powerful tools for
validating the performance of HTS-based technologies, such
as superconducting power equipment. However, they are sub-
jected to strict real-time constraints that limit the suitability of
extremely complex models, such as the 3D FE models typ-
ically needed for superconducting applications. Data-driven

AI-based modelling solutions can solve this issue. Through
off-line complex FEM simulations, the model can be trained
to solve a specific power system issue of interest, avoiding
the model’s over-complexity and reducing the needed com-
putational time without compromising simulation accuracy.
To increase the model flexibility, making it able to meet new
grid conditions, a supervisor AI layer can be implemented
in the real-time simulator that updates the model paramet-
ers depending on the operating point. Concluding, the AI-
based solution enables simulating complex HTS-based mod-
els under real-time constraints without reducing the simulation
accuracy.

11
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larger number of grains, such as eight [32] or higher [37].
For example, in an eight-grain bulk, more than 20 intergrain
loops can be expected, and previous GA-based methodolo-
gies will not be viable. To address these challenges, the use of
hybrid methods, involving both evolutionary or meta-heuristic
algorithms and ANN, is foreseen. ANN are universal inter-
polators, and they can learn the fitness function, decreasing
the processing effort of the latter as they are simultaneously
trained, also allowing the removal of irrelevant unknowns.
Since ANN are implemented by an analytical function, they
improve computation time by replacing the calculation of
Biot–Savart law, which must be determined for all current ele-
ments in all the loops. In addition, new paradigms are fore-
seen to emerge from the AI field, such as DL for processing
trapped field surfaces. DL is a class of machine learning (ML)
algorithms that use multiple processing layers of data to learn
patterns in it, and have been successfully applied in many
fields, such as medical imaging automated analysis [38]. DL
addresses both labelled and unlabelled data. Regression mod-
els, in semi-supervised learning paradigms, can be researched,
where flux density at any point in space will be predicted from
trapped field surfaces.
Trapped field fluctuations and current density dependen-

cies: the effect of the complex EM environment of the devices
on the trapped field attenuation, including its long-term oper-
ation and measures to mitigate it, needs more research [3]. As
before, the use of DL is envisaged to capture patterns and learn
from observations, e.g. updating JC (B) on each loop.
3D printed bulks: as this is an emerging field, there is little

knowledge reported on the configuration of loops and these

may be hardly labelled. Unsupervised DL provides a prospect-
ive approach to building regression models, but new develop-
ments are required, as related to the parametrisation of current
loops, that may differ depending on the layer of the deposited
material.
Data availability: the amount of data required to train

the DL networks depends on the complexity of the problem,
i.e., the number of features to predict. Thousands of trapped
field surfaces may be required, and it is not feasible to generate
them individually. Collaborative repositories, where data can
be uploaded and automatically validated need to be developed
for this paradigm to succeed.

Concluding remarks

Sand-pile modelling with evolutionary algorithms such as
GA has shown to be a fast methodology to model trapped
fields, yet, in limited applications. For realistic operating con-
ditions and advanced concepts, new methodologies need to be
developed. DL techniques, in distinct learning paradigms and
datasets nature are foreseen to allow for building regression
models. The availability of large datasets highlights as one of
the main challenges for DL success, where collaborative data-
gathering approaches are required.
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Modelling of superconducting materials and applications is of
great importance in two aspects: (a) design and optimisation
of superconducting components without the need of building
prototypes; (b) detailed analysis of physical properties, such
as electro-magnetic fields, mechanical stress, and temperature.
Superconductors have a very peculiar EM behaviour, requir-
ing dedicated models to obtain the distribution of macroscopic
electrical currents and magnetic fields. The existing model-
ling approaches are grouped into two categories, analytical and
numerical.

A notable example of an analytical model is the Crit-
ical State Model [24, 39], which provides formulas for AC
loss calculation—a key quantity for the efficiency of super-
conducting applications. Analytical models are of almost
instantaneous use but present important limitations, e.g. they
are restricted to simple geometries and assume constant phys-
ical properties; they are of limited usability for most realistic
problems.

Numerical models exhibit high-fidelity in simulating com-
plex superconducting applications. To simulate the EM beha-
viour of superconductors, different mathematical formulations
and methods have been proposed [24, 40–43]. Among these,
commercial solutions (mostly based on the FEM) have gen-
erally a user-friendly interface and a straightforward model-
building; circuit models have relatively fast calculation speed
as compared to FEM whilst maintaining a good accuracy; in-
house codes, such as those based on variational and spectral
methods [41–43], can be computationally much more efficient
[42]. Despite the high-fidelity of numerical models, heavy
computing load remains an obstacle to fully benefit the super-
conducting community, particularly for large-scale applica-
tions and 3D shapes, solving which could take up to days
and weeks on a desktop computer. Massive parallel comput-
ing could potentially reduce the running time, but with high
implementation costs.

In summary, neither analytical nor numerical models can
achieve high fidelity and fast computation simultaneously.
However, surrogate models could provide satisfactory accur-
acy, versatility, and real-time computation [17, 44, 45]. Sur-
rogate models are based on AI approaches, including neut-
ral networks, DL, ML, etc [17, 44, 45]. They need input
data obtained from experiments or physics-basedmodels, such
as numerical models. AI-based surrogate models have been

adopted in numerous studies to solve engineering problems.
However, few studies used data-driven physics-based surrog-
ate models for superconductors and their applications, and
most of them fall into the performance assessment like AC
loss and design optimisation [11].

Current and future challenges

The current challenge in the modelling and simulation of
superconductors and their applications with complex geomet-
ries, is the compromise between the model’s high-fidelity and
instantaneous computation, by current modelling approaches,
either analytical or numerical models.

Apart from this, the existing simulation models would be
struck harder with the need to model the system response
where multiple applications exist with complex connections.
In addition, the existing simulation models will most prob-
ably fail to tackle emerging new functionalities in many fields,
including electrified transportation systems, power grids, and
other electric systems where applicable. For instance, the
superconducting technology has been foreseen to be the
enabling technique for electric aircraft powertrain systems to
reduce aviation emissions, and hence more and more regional
electric aircraft or powertrain demonstrators will require cryo-
genic superconducting components and applications on board
to increase efficiency, reduce weight and size, and increase
power density in the next 10 yr. Therefore, it is demand-
ing to have a high-fidelity and extra-fast computing simula-
tion model, in a couple of seconds and down to ms, which
could achieve real-time condition monitoring, fault diagnosis,
system control and performance assessment. Therefore, a
physics-based highly precise and fast computing surrogate
model will be urgently required. To establish surrogate mod-
els, data are required either from experimental systems or sim-
ulation models, such as analytical and numerical models.

The areas shown below will be at the forefront of the emer-
ging challenges confronting the modelling and simulation of
superconducting applications and systems in future, and prop-
erly validated surrogate models are promising to tackle these:

(a) Performance assessment in the design stage, including
AC loss and electro-thermal quench of superconducting
components.

(b) Design optimisation. The surrogate model will help
multi-objective design optimisation for superconducting
applications.

(c) Operating stage: Real-time condition monitoring for
superconducting cables (SCs), superconducting machines,
superconducting fault current limiters (SFCLs), and other
electrical devices on board, such as thermal management.

(d) Fault detection. It is crucial to build a fast, accurate, and
reliable fault detection system for the protection of super-
conducting magnets.

(e) System control, such as electric machines, SMES, super-
conducting circuit breaker, flux pump, etc.
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At the current stage, AI is not broadly used in the design,
manufacturing, and testing of superconducting magnetic MRI
magnets yet. This section presents how the latest AI develop-
ments can open new opportunities for the MRI industry. AI-
based modelling and optimisation approaches may help in the
design of the high-uniformity high-persistence superconduct-
ing magnets including coil location, conductor optimisation,
loss analysis, aggressive quench protection, shim assembly
design, and cryogenic system optimisation. This section
reviews the existing preliminary-stage design and optimisation
of the superconducting magnet and other components for MRI
systems using AI techniques. The knowledge-basedmodelling
may be used to address system component interactions such as
magnet-to-gradient interaction. The classification and cluster-
ing methods may find application in quench origin and cause
identification when very limited information is available. Dif-
ferent AImethods could be used for the selection of the lowest-
cost manufacturing methods, identification of cost-effective
manufacturing tolerances, shimming optimisation, fault mode
analysis, etc. AI promises to be helpful in the development of
higher-performance, more affordable commercial MRI scan-
ners and for the design of extremely challenging ultra-high
field (>10 Tesla) MRI scanners.

The working principle using AI technology to optimise the
homogenous magnetic field of the MRI HTS magnet is shown
in figure 7. For example, the GA can use the strategy shown in
figure 7 to reduce computation burden and time, and efficiently
optimise the homogeneity of background magnetic fields of
MRI scanners.

Figure 8 presents the homogenous magnetic field of the
HTS magnet in a mobile MRI for extremities, before and
after using the GA. It can be seen that the homogeneity
after AI optimisation (15 cm × 17 cm diameter elliptical
volume (DEV), 17.98 ppm peak–peak) is much better than the
homogeneity before AI optimisation (15 cm × 17 cm DEV,
6.57 ppm peak–peak). Furthermore, the AI-processed DEV
cross-section has a much more clean area of ppm < 1, which
implies the AI technology has superior advantages of reducing
the harmonics over conventional optimisation methods.

Current and future challenges

The AI methods find applications in clinical diagnostics for
MRI, from image acquisition to image interpretation and pro-
gnostic evaluation. Multiple AI approaches are used in the

diagnostic practice including DL, ANNs, and supervised and
unsupervised ML. Although AI approaches are not broadly
used in MRI magnets yet beyond the design of specific
components [46], the methods show significant potential. MRI
scanner is a commercial product, with thousands of scanners
shipped to customers annually.

Superconducting MRI magnets must meet multiple chal-
lenging and conflicting requirements:

• Because of the resonance nature of the scanning modality,
commercial scanners must deliver the exact required mag-
netic field. Even a 1% deficiency of the magnetic field below
nominal is not acceptable.

• High magnetic field homogeneity in a large volume. The
typical magnet uniformity for whole-body MRI scanners
shall be about ten parts per million (ppm) in 45 cm diameter
spherical volume (DSV) [47].

• High-quality imaging requires persistent operation of the
magnet. Magnetic field decay shall be below the averaged
0.1 ppm hr−1, or 0.088% yr−1 [12]. The total voltage drop
across a typical 1.5 T magnet shall be below 0.3 mV, or the
total circuit resistance shall be below 1 nΩ.

• The magnet must generate a minimum stray magnetic field.
The typical 5-gauss line of the commercial whole-body
magnets is approximately 4× 2.5 m from the magnet centre
for 1.5 T units and 5 × 3 m for the 3 T scanners [47]. Even
the ultra-high field 7 Tesla and 11.7 T Iseult magnets utilise
the actively-shielded architecture [48, 49].

• In the whole-body scanners, the patient-accessible warm
bore needs to be maximised to at least 60 cm, better
70 cm, while themagnet should be compact, with minimised
weight, length, and overall diameter. The compact scanner
design assumes not only magnet optimisation but also mul-
tiple system trade-offs including dimensional constraints for
the scanner components such as magnet and gradient coils
that compete for the same space.

• Conductor selection for MRI magnets includes multiple
trade-offs. The typical monolith or wire-in-channel con-
ductor offers better winding quality, lower conductor cost,
and persistent operation with known techniques for super-
conducting joints. The relatively low current causes high
voltages during a quench. A long single-piece conductor
length on the order of 5 km is required.

• To deliver the required image quality, EM, mechanical, and
thermal interactions between the magnet components shall
be minimised.

• The MRI scanners are commercial units, so their procure-
ment and life-cycle costs must be minimised. The costs are
minimised if manufacturing and test methods are optimised
while the yield of the scanners shipped to customers shall be
maximised.

Advances in science and technology to meet
challenges

AI techniques can be used for MRI magnet design, protection,
manufacturing, testing, and performance analysis.
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trial and error method or even a mathematical search method,
especially for the design of ultra-high field (>10 Tesla) MRI
magnets [50–53].

Several optimisation algorithms may be considered to
address a variety of EM, thermal and structural problems that
could depend on the magnet configuration and application
such as commercial magnets versus one-of-a-kind, ultra-high
field MRI, etc. So far, the GA optimiser is most frequently
used for addressing a specific issue of optimisation of the loc-
ation and configuration. For example, the GA optimiser is suit-
able for the homogeneity optimisation of the main background
magnetic fields of MRI magnets, and a case study has proved
the homogeneity could potentially be less than 1 ppm in a
10 cm DSV of an HTS MRI magnet, with a decent optim-
isation speed [53]. However, in the future other AI techniques
such as ANN [54], together with meta-heuristic and swarm-
based optimisation algorithms, may be considered.

There are relevant optimisation methods for supercon-
ducting magnets discussed in section 4 ‘surrogate mod-
elling of superconducting materials and applications’ and
section 6 ‘integrated magnet design environment via surrog-
ate modelling-based optimisation’ that can be considered in
future for HTS magnet designs.

Magnet protection. The magnet protection must be safe and
reliable in any mode of operation including magnet ramp at
low- and high-currents, insertion or retraction of the current
leads, or persistent operation. Quench shall not cause any
degradation of the magnet performance. At the same time,
faulty activation of the protection is unacceptable. Safety con-
cerns require that MRI magnets are equipped with the emer-
gency field shut down unit for fast ramp-down in case of emer-
gency. Supervised and knowledge-based modelling methods
may be used for the analysis of multiple quench scenarios.
AI will help in the selection of a reliable, low-cost protection
approach.

The MRI scanner consists of multiple subsystems includ-
ing magnet, gradient and RF coils, shimming assembly, con-
ductive cryostat vessel, etc. Although every effort is made to
minimise the sub-system interaction, it is either very expensive
or not feasible to assure zero interference including localised
interference, especially taking into account all manufacturing
tolerances. The interference may require slower component
operation thus increasing the scanning time and reducing
patient throughput. The interference may affect the image
quality or even cause a system fault, such as a magnet quench.
Regression and prediction, and modelling methods may help
in the proper component design and minimisation of the sub-
system interaction.

Manufacturing. AI methods will be very helpful in the com-
mercial manufacturing of MRI scanners. The field decay in
persistent MRI magnets depends on the conductor margins,
the quality of superconducting joints and the transition rate
from superconducting to resistive state often described by the
index N. These factors are highly variable, although at differ-
ent rates. It is expensive and often not possible to repair the
magnet with high field decay: likely, the decaying magnet will
be scrapped. Reliable optimisation shall guarantee an accept-
able decay while minimising the material and manufacturing
costs. DL for analysing conductor andmanufacturing datamay
be used.

Due to unavoidable manufacturing tolerances, the magnets
as-built have a non-uniformity of several 100 ppm. In addi-
tion, the effects of a magnetic environment such as metal
beams or passive shielding of the room must be compensated
for. Shimming system is used to reduce the non-homogeneity
to the necessary level of 10 ppm. Over-design of the shim-
ming system is counter-productive: the oversized shims may
occupy expensive space in the system, increasing interaction
with other components. Statistical analysis of the manufactur-
ing tolerances and environment, regression and prediction, and
classification methods may be applied.

Testing. All superconducting MRI magnets are tested for
performance before shipment to customers. AI methods may
reduce testing time and minimise unnecessary quenches. For
example, quench analysis may help in the identification of the
quench scenarios, quench origin, and identify specific con-
ditions that result in quenches. MRI components including
switches and diodes are often 100% tested at cryogenic tem-
perature before integration with the magnet. Regression and
prediction methods may reduce full testing to sample testing.
AI analysis of the test results will reduce the qualification time
and assure better access of customers worldwide to MRI ima-
ging opportunities.

Concluding remarks

AI algorithms can powerfully optimise the homogeneity of the
magnetic field from the superconducting MRI magnet. In the
future, AI technologies will have great involvement in theMRI
industry, for the cost-effective manufacturing, high-quality
optimisation, high-efficiency testing, and high-performance
operation of MRI scanners.
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impedance, specified recovery time, and cost. Meta-heuristic
algorithms as mentioned above, are the best option for such a
study.

Non-destructive condition monitoring methods for super-
conducting transformers must be developed in the near future
to detect inter-turn faults, hot spots, and deformation in wind-
ings. Traditional relay-based protection systems are sensitive
to large external short circuit currents but cannot detect inter-
turn faults for superconducting transformers in the early stages
of fault development and this can be catastrophic if the fault
lasts long. AI techniques can detect inter-turn faults in a super-
conducting winding by comparing the time and/or frequency
domain data of some faulty and healthy samples of transformer
current. Fibre optic sensor is currently used to detect hot spots
of superconducting windings, which its implementation adds
the complexity of the winding assembly process and changes
the heat transfer of LN2 near the winding. AI techniques can
detect the hot spot by analysing the current and voltage wave-
forms of the windings. Sufficient experimental data on the crit-
ical current of an intentionally damaged tape are necessary.
This is a classification and clustering task for AI techniques,
which can be done through different ML approaches. In addi-
tion, if real-time detection is desired, DL approaches which
use CNNs can be used as very efficient options.

Intelligent simulation models of superconducting trans-
formers can be established based on surrogate or meta-
modelling methods. The existing modelling/simulation is
performed through analytical, equivalent circuit-based, or
FE-based models that are incapable of offering real-time ana-
lysis. AI-based meta-models composed of multilayer NNs
could achieve fast computation and acceptable accuracy com-
pared to other models. For instance, once a meta-model of a
transformer is established, online AC loss estimation/predic-
tion is accessed by logging the input current and voltage of

windings. Any drastic drift of AC loss from the base value
would indicate an anomaly in transformer winding, e.g. early
quench, hot spot, critical current degradation, etc.

Real-time intelligent quality monitoring of superconductor
production lines can be designed to analyse the output data
of the sensors. ML and image processing techniques will
help find important parameters to produce superconducting
tape/wire with high uniformity of critical current density along
the length. ML methods can be adopted to predict the critical
temperature of new superconductors.

Concluding remarks

AI techniques can address and tackle the challenges that a
superconducting transformer is confronted with, i.e. purchas-
ing price, weight and size, fault tolerance performance, cool-
ing cost, condition monitoring, and tape performance and
manufacturing challenges. The opportunities offered by AI
can lead to producing a smart superconducting transformer
in the next decades. Many AI techniques including those of
heuristic and meta-heuristic optimisation algorithms, ANNs,
deep NNs, etc can be used to address the aforementioned
challenges.
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Superconducting magnets are made of superconducting wires
or cables winded to form a coil. There are multiple mag-
net applications with different designs, but a constant is the
requirement for higher magnetic fields to increase: the power
density in fusion reactors; the energy of a collider for HEP; the
resolution in MRI or nuclear magnetic resonance. A higher
field implies higher operating currents, and because of high
current and high magnetic field, the conductor ends up being
under extreme electromagnetic loads. Therefore, the limit-
ing factor in magnet design is not only the critical current
of the superconductor but also the mechanical tolerance of
the wire, which requires constant improvement in both mater-
ial technology and wire design. For example, to design new
Nb3Sn dipole magnets capable of operating at 16 T, CERN
has launched the Conductor Development Program for the
FCC [127]. This program is driving the worldwide effort to
develop new high-performance Nb3Sn wires improving the
wire critical current density (Jc) above 1500 A mm−2, and at
the same time increasing the wire stress limit above 200 MPa.
The latter aspect is particularly important because Nb3Sn brit-
tleness is already posing problems in other accelerator magnet
developments.

Current and future challenges

Magnets are designed using sophisticated multi-physics FE
models that include electrical, mechanical, and thermal prop-
erties of the superconducting wire or cable [128]. The limit
of these simulations is that superconducting wires, which
are composite materials made of superconducting filaments
embedded in a metallic matrix, are modelled as homogen-
eous materials with properties averaged over the cross-section
and across the entire length. This approximation has the draw-
back of not fully capturing the real properties of the wire,
and thus represents a limitation when optimising the magnet
designs. Guided by the practical need of making efficient use
of the superconductor while coping with large EM stresses, it
is becoming essential to improve FE models by reproducing
the internal characteristics of wires, and this requires the cre-
ation of new methods to map and reconstruct their internal
structures. Nevertheless, increasing the accuracy of the FE
models needs the benchmark of dedicated experiments able
to reproduce the magnet operating conditions [129].

This approach was applied to investigate the correlation
between the wire microstructural features and the irreversible
degradation of Jc under axial loads for Nb3Sn wires produced
by the bronze route [130]. X-ray micro-tomography was used
to map the wire internal structures, including the Kirkend-
all voids formed during the reaction heat treatment (RHT).
Finally, the distribution of the voids was implemented in a
mechanical FEmodel to quantify the role of voids in the reduc-
tion of the electro-mechanical limits.

These studies based on the identification of specific fea-
tures in wire images represent the ideal playground for AI
techniques, thanks to the impressive advancements reached
recently in object detection [131]. In particular, micro-
tomography can be easily combined with ML and ANNs tools
to reconstruct the internal structures of wires and also provide
new insights for the improvement of their performance.

Advances in science and technology to meet
challenges

One of the breakthroughs of AI is the use of ANNs for com-
puter vision applications, and the development of the next gen-
eration of superconducting wires could greatly benefit from
this advancement. Presently, when optimising the design of
a superconducting wire, the consequences on its microstruc-
ture after reaction are disregarded. This can be attributed to
the difficulties of analysing the internal structure and to the
lack of ability to systematically process large amounts of
data. The former challenge can be addressed by x-ray micro-
tomography. The latter issue can be solved by the ability of
AI to process large quantities of data in a fast and reliable
way. In addition, the possibility of analysing images with
high precision of AI techniques will allow to highlight the
presence of defects or deformations which can be respons-
ible for decreasing the wire’s mechanical, electrical or thermal
performances. The ANNs learn by processing examples and
forming an association between inputs and outputs, and the
large amount of data generated by tomography is the ideal
condition for training an ANN. Among the ANNs, the CNNs
have proven to be effective for medical images analysis,
and among different variants of CNNs, U-Net is recommen-
ded for components detection because of the high precision
reached in the segmentation even with few training images
with, moreover, the capability to operate in both 2D and
3D [132].

In the future, both ML and ANN will be applied to tackle
different issues in various wire materials and technologies to
improve wire performances, such as:

• �/�C���4�O: during the RHT of the wires, the formation of
the Nb–Sn phase generates Kirkendall voids, which cause
a degradation of the microstructural homogeneity and act
as stress concentrators and nucleation points for cracks
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it takes 25 million data points per day even with a modest pro-
duction level of 1000 km of HTS tape per year. Thus, optimal
volume management of data is very important in itself.

As we are obviously at the very beginning of this path
today, further development could require the application of
more complex techniques like DL. The further direction will
become clearer after enough data are collected in the existing
database and statistically meaningful experience of using ML
software will be obtained and evaluated. We are looking for-
ward to keeping reporting these results in future.

Concluding remarks

With the HTS production process being very sophisticated and
multi-parametric, it is unlikely that extremely stable techno-

logy with wide process windows will emerge or that human
control will prove to be any viable route for truly large-scale
production in the 2020s. From an HTS tape producer’s per-
spective, we rather look for new digital technologies to open
the way to cheaper and better HTS tape. Moreover, our assess-
ment is that the turning point is now, it is today, when advanced
tools like BD, NNs and AI should be integrated into the pro-
cess development and control to enable further technological
success.
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High-Tc superconductivity (HTCS) in cuprates is one of the
most profound physics problems since 1986. The strong elec-
tronic correlations, which are intrinsically a quantum many-
body (QMB) effect, responsible for the superconducting,
pseudo-gap, and other measured phases in unconventional
HTCS cuprates remain an unresolved problem in condensed
matter physics to date. This is famously known as the ‘HTCS
conundrum’ [144]. There has not been a consensus on a con-
vincing model that can provide a consistent explanation for all
experimentally measured aspects related to HTCS in cuprates.
Arriving at a working theoretical model for resolving the
conundrum in HTCS constitutes one of the ‘Holy Grails’ in
condensed matter physics. Apart from arriving at the right the-
oretical model, the other major challenge concerns the difficult
task of solving these many-body physics models which are,
generically, computationally expensive if not practically for-
midable. Specifically, the classification of quantum phases in a
generic QMB model Hamiltonian with existing, conventional
computational approaches is known to be particularly expens-
ive computationally.

The call for a falsifiable model that is simple, physically
well-motivated, predictive, admitting no exotic contrivance,
theoretically consistent, and can provide a holistic solution to
the HTCS conundrum is clearly desirable. Constructing and
probing the physics of such models should be part of the
concerted effort for solving the HTCS conundrum. Falsify-
ing a specific model against experimental observations nar-
rows down the possible ‘phase space’ of possible explana-
tions or mechanisms as a viable explanation to the conun-
drum. It serves the benefit of feedback that hints at the dir-
ection in which we should be heading or avoiding. On the
other hand, if verified, such a solution shall become the ref-
erence model for understanding the structure of HTCS in
cuprates. The knowledge of the mechanism occurring at the
atomic level giving rise to the emergence or disappearance of
HTCS phases in the cuprates has practical significance, i.e. it
can pave the way to the exciting possibility of engineering
materials at the atomistic level to achieve optimised high-Tc

superconductors.

Current and future challenges

Models for unconventional HTCS generically involve QMB
effects. Quantum many-body problems (QMPs) are known
to be computationally daunting due to the nontrivial correla-
tions encoded in the exponential complexity of the many-body
wave function [145]. An exponential amount of information

is needed to fully encode a generic many-body quantum
state, rendering reliable numerical solutions for the ground
state technically difficult to come by. Conventionally, many-
body calculations are performed through highly sophisticated
computational methods with some extent of approximations,
such as quantum Monte Carlo (QMC) methods, density mat-
rix renormalisation group [146], matrix product states [147],
tensor networks and general tensor networks [148]. However,
there are many instances where these conventional approaches
converge poorly due to, e.g. the Fermion sign problem or the
inefficiency in handling the exponentially huge degree of free-
dom inherent in these systems. Fundamentally, the quandary
inQMP lies in the failure of finding a general strategy to reduce
the exponential complexity of the full many-body wave func-
tion down to its most essential features. This is known as the
‘curse of dimensionality’ [149]. The 2D Hubbard model, a
prototype QMB theory, provides a working model that cap-
tures some if not all essential features in copper-oxide super-
conductors. Mainly due to the inherent sign problem, the
2D Hubbard model remains a daunting model to be com-
pletely solved despite relentless computational efforts spent
for so many years to abstract the embedded physics respons-
ible for the HTCS in cuprates. Heroic efforts had attemp-
ted to obtain the ground state of the prototype 2D Hub-
bard model using state-of-the-art, but non- ML, computational
methods. These include, e.g. an auxiliary field QMC, dens-
ity matrix renormalisation group, density matrix embedding,
infinite projected entangled pair states [150] and dynamical
cluster approximation [151] which attempt to map out the
quantum phases along with other physical insights, e.g. the
transition temperatures as a function of the dopant concentra-
tion, in the 2D Hubbard model. It is well known that these
non-ML-inspired approaches are highly expensive and expert-
knowledge demanding. Even after many years of advance-
ment in computational physics, dealing with QMP using
non-ML numerical approaches has not become tremendously
simplified.

Advances in science and technology to meet
challenges

ML is a powerful tool for solving QMP. It can classify,
identify, and interpret massive data sets, hence is ideal for
handling exponentially large data sets embodied in the state
space of a QMB system. The pioneering works [145] have
achieved phase classification and transitions in selected QMB
using a restricted Boltzmann machine (RBM) without know-
ing a priori the boundary of the phases. The key ingredient
was the effectiveness of RBM to compress the information
of the many-body wave function in high-dimensional systems
into the NN representing them, tremendously reducing the
dimensionality to represent the QMP. The computational cost
was reduced by many orders of magnitude. The approach also
probes into parametric regions that are otherwise not possible
using conventional numerical approaches per se.

A relatively conservative, non-exotic but physically well-
motivated mechanism for modelling HTCS in cuprates was
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Recent years have witnessed tremendous breakthroughs in
achieving record-high superconducting transition (critical)
temperature Tc in high-pressure hydrides, which exhibit high
Debye temperature and strong electron–phonon coupling for
good conventional phonon-mediated superconductors. First-
principles density functional theory (DFT) and crystal struc-
ture prediction (CSP) have played important roles in discov-
ering high-Tc hydrides. For example, the ‘clathrate’ structure
of LaH10 (Tc ∼ 260 K at 190 GPa) was predicted first by
DFT and CSP [154, 155], and later confirmed experiment-
ally. For practical applications, it would be crucial to dis-
cover new room-temperature superconductors at reduced pres-
sure. To date, most binary hydrides have been investigated
using these computational methods, and it is timely to explore
doped and ternary (or even quaternary) hydrides. However,
first-principles structure predictions are challenging in these
systems, due to large unit cells and huge search phase space.
Data-driven ML approaches can be promising and powerful
tools to largely expedite the process of predicting new crystal
structures and modelling their electron–phonon properties for
estimating the Tc.

At ambient pressure, the cuprate superconductors are the
record holders of Tc, but their unconventional superconduct-
ivity remains one of the greatest mysteries. Due to the parent
magnetic insulating state and the d-wave pairing symmetry
in the cuprate phase diagram, it has been assessed that the
strong correlation effect of d-orbital electrons is the primary
reason for a high Tc, and the system is usually described
by Hubbard-type Hamiltonians. Prominent spin fluctuations
caused by correlation effects act as the pairing glue of the
correct symmetry. This mechanism has been demonstrated in
a quasi-one-dimensional Hubbard model [156]. In two spa-
tial dimensions, the mechanism is not yet fully established,
as no exact numerical solutions are available. More recently,
experimental evidence about other coexisting degrees of free-
dom, such as phonons, has been revealed by spectral meas-
urements. For example, it is shown that interfacial electron–
phonon coupling can be applied to enhance the Tc of FeSe
[157], which is another type of unconventional supercon-
ductor. The interplay between electron correlation and phonon
degrees of freedom might hold the key to unlocking the mys-
tery of high-Tc unconventional superconductivity.

Current and future challenges

The Eliashberg theory provides a quantitative tool to estimate
the superconducting Tc in phonon-mediated superconductors.
A key quantity in the theory is the Eliashberg spectral function
α2F(ω) for computing the electron–phonon coupling para-
meter λ. Once λ is known, Tc can be estimated with reasonable
accuracy by analytical expressions such as the McMillan or
Allen–Dynes formula (obtained by fitting to numerical solu-
tions of the Eliashberg equations). The function α2F(ω) can
be obtained from tunnelling experiments or computed from
first principles. However, phonon calculations from DFT or
ab initiomolecular dynamics remain computationally expens-
ive, and they require the knowledge of stable crystal struc-
tures at a given pressure. For a priori unknown structure, CSP
aiming at finding stable structures knowing only the chem-
ical composition (and the pre-specified number of atoms in
the unit cell) can be performed, using e.g. particle swarm
optimisation or evolutionary algorithms. In the actual imple-
mentation, CSP usually begins with randomly generated struc-
tures or user-provided seed structures. Some unlikely struc-
tures of extremely small bond angles or unphysically short
bond lengths can be directly eliminated during the optimisa-
tion to speed up the search process. However, thousands of
time-consuming DFT structure relaxations are still needed in
a typical CSP calculation. Therefore, to achieve large-scale
computational predictions of new potential Bardeen–Cooper–
Schrieffer (BCS) superconductors with higher-Tc at reduced
pressure, the challenges would be to efficiently generate stable
structures and model their electron–phonon properties from
first principles.

For unconventional superconductors, the presence of strong
correlation effects and intertwined orders hinders a compre-
hensive characterisation of the collective excitations. While
experimental synthesis and characterisation techniques have
been substantially advanced, one of the major challenges lies
in the lack of accurate simulation tools for model Hamilto-
nians to address their properties in the thermodynamic limit.
On one hand, DFT-based methods without static correlations
usually fail to properly capture the electronic structures of
correlated materials. On the other hand, unbiased solutions
via wavefunction-based or QMC approaches are restricted
to small clusters or relatively high temperatures. The chal-
lenge is even more severe when both correlation and non-
perturbative electron–phonon coupling have to be considered
simultaneously [158].

Advances in science and technology to meet
challenges

Data-driven approaches are becoming powerful tools for
materials modelling and discovery. The advances are due
to the availability of materials databases, progress in com-
puter architectures, and the development of ML algorithms. In
principle, NNs can bypass manual feature creations, thereby
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suitable film/substrate configurations. The obtained thin
films can be fully characterised by various spectroscopic
or thermodynamic measurements, yielding experimental data
that can be fed into data-enabled predictions for honing in on
the novel compound discovery.

Concluding remarks

The ability to model, predict, and synthesise new higher-
Tc superconductors at reduced or ambient pressures will
open up unprecedented opportunities to revolutionise energy,
transportation, and information technologies. The associated
challenges can potentially be overcome with future endeav-
ours from the scientific community, by constructing relevant
computational and experimental databases, especially for
dynamical spectra, by extending deep generative algorithms

for inverse designs of electron–phonon and superconducting
properties, and by applying data analysis, interpretation, and
decision-making to spectroscopic measurements and combin-
atorial materials synthesis methods. With the revolution on the
fourth paradigm of scientific discovery, it is expected that data
science andML approaches will play crucial roles in achieving
these goals.
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Status

AI refers to systems that show smart behaviour by analys-
ing their environment and taking actions to achieve specific
goals, with some degree of autonomy [163]. AI has the poten-
tial to offer tools for learning, knowledge discovery, pattern
recognition, and decision-making to resemble human abilit-
ies such as the ability to reason, discover meaning, and learn
from experience. As a scientific discipline, AI includes sev-
eral approaches such as (a) ML that gives computers the abil-
ity to learn without being explicitly programmed [164], (b)
DL methods that use sophisticated, multi-layered NNs, where
the level of abstraction gradually increases through nonlinear
transformations of input data [165], (c) BD describes large,
hard-to-manage volumes of data (structured and unstructured)
generated in the processes.

AI techniques were used as a solution to complex prob-
lems and challenges in the superconductivity community, for
(a) design of large-scale superconducting devices aiming for
optimum weight, cost, and AC loss; (b) detection of faults,
abnormalities, hot spots, and quench detection; for critical cur-
rent, and AC loss estimations; (c) predicting the new supercon-
ducting composites and materials and also the price of super-
conducting devices [12, 45, 166].

A fundamental shift to the existing operating models is
clearly happening. A digital reinvention is occurring in asset-
intensive industries that are changing operating models in a
disruptive way, requiring an integrated physical plus digital
view of assets, equipment, facilities and processes. DTs arise
in this context as a vital part of that realignment—a virtual
model designed to accurately reflect a physical object or sys-
tem that spans its lifecycle is updated from real-time data
and uses simulation, ML and reasoning to support decision-
making [165].

Current and future challenges

Research in superconductivity can produce large amounts of
experimental and simulation data on microstructures, syn-
thesis, critical behaviour, design stage, testing stage, and man-
ufacturing process at component, device, and system levels.
Modern computing systems provide the speed, power and

flexibility needed to efficiently access massive amounts and
types of BD, but perhaps not enough yet for real-time ana-
lysis in some superconducting applications. AI/ML/DL arises
as efficient tools for data analysis under scenarios in which we
are interested in superconductivity and DT to study the inter-
action of physical components. The virtual model can be used
to run simulations, study performance aspects, identify pos-
sible improvements and produce valuable insights, which can
be applied back to the original physical object/component.

Some challenges of AI can be expressed as follows [163,
164, 167–169]:

(a) Fusion of AI and robotics to create an intelligence that
can make decisions and remotely control superconducting
devices in case of an anomaly, for instance in a quench
event in superconducting magnets.

(b) Processing unstructured data (UD), coming from many
sensors which are likely to be used in commercial
superconducting devices including acoustic and vibration
sensors. Managing and processing UD brings major chal-
lenges in the scale of data and sharing them.

(c) Integration to augmented intelligence, which is essentially
using AI/ML/DL techniques to provide actionable data or
models for humans, as they work as virtual assistance. For
example, if a quench happens in the superconducting mag-
net of a fusion system, then augmented intelligence will
provide information on how bad it is or it can be but leave
the final decision-making on how to control or approach
it to the fusion system operator. It is an essential part of
our future superconducting industry, as when BD is avail-
able using augmented intelligence is inevitable. Another
example is the predictive maintenance of superconducting
systems according to previous BD stored.

(d) AI integration with Cloud, for instance, to update a real-
time model according to new parameters of superconduct-
ing systems over the years.

(e) Over-fitted data and bad data, that can cause malfunction
for already designed AI-based systems for superconduct-
ing applications.

(f) Advances in adversarial learning and explainability to
avoid poisoned data sets and bias problems.

(g) Data storage and processing limitations, when it comes
to BD produced in superconducting manufacturing and
condition monitoring processes, especially over the life-
time of a superconducting device. On the other hand, high-
performance computing systems are needed to reduce the
computation burden when DL is used for superconducting
applications.

(h) Multi-cloud would need to be evolved with different data
strategies.

(i) Edge AI security, for example, if an AI system is used for
superconducting devices in sensitive applications such as
electric aerospace applications or the fusion industry, it
is very important to keep the models secure against any
cyber-attacks.

(j) The challenge of unseen data, which concerns the inab-
ility of AI methods to simply express the term ‘I do not
know’. For example, when an AI system is designed to

50





Supercond. Sci. Technol. 36 (2023) 043501 Roadmap

trial-and-error approaches [170]. It is expected to see an
increased focus on trust, ethics, transparency, and governance
of AI systems. The identification of bias, data quality and
explainability/interpretability to inform stakeholders about
how specific decisions were done and what factors could
update and change those decisions.

Hyper-automation arises in this context as the process
of applying innovative developments to speed up and sim-
plify tasks with minimal human intervention and knowledge.
Another challenge is related to the quantum autoencoders-
based approaches that may enable increased use of resources
and potential implementations with trapped ions, supercon-
ducting circuits, and quantum photonics.

Several efforts were developed to support AI challenges
by using conventional silicon microelectronics in conjunc-
tion with light. However, the production of silicon chips with
electronic and photonic circuit elements is difficult for many
physical/practical reasons related to the used materials [170].
Large-scale AI that focuses on integrating photonic compon-
ents with superconducting electronics could be a solution.
Using light for communication in conjunction with complex
electronic circuits for computation could enable AI systems
of scale and functionality.

DT is defined as a virtual model that is characterised in a
highly accurate manner that receives data, and after that, the
data are used to model the characteristics of superconducting
devices and make decisions about the performance, design,
control, protection, manufacture, and even maintenance of the
device. Then the made decisions are sent towards the physical
twin to be applied in related components. In fact, DT is the
intersection of AI methods, cloud computing, the IoTs, and
most importantly, CPSs. CPS is a smart and highly intelligent
technology that is used for the integration of sensing, control,
computation, and networking in a physical system or device,
such as superconducting devices [170]. Thus, in near future not
only non-real-time AI techniques would be applied to increase
the accuracy of models, simulations, predictions, etc related to
superconducting devices but also DTs and CPSs based on real-
time computations would be applied to many superconduct-
ing apparatuses and devices. On the other hand, DT and CPS
could be used in the design stage of superconducting devices
not only with respect to initial constraints but also according
to requirements that could be different for each application or
customer. This can also improve the efficiency and general-
ity of the design process. Estimation of precise maintenance
time is another challenge that is possible to be rid of employ-
ing DT and CPS. For this purpose, DT receives the opera-
tional condition of the superconducting device from sensors
and accesses some historical data about the previous repairs
and maintenance. After that, using AI methods, an accurate
estimation would be presented as the next possible mainten-
ance timeline.

In near future, it is expected that AI methods will be imple-
mented in:

• Discovery of novel superconductors with specific critical
temperature or critical current condition monitoring of
large-scale superconducting power devices such as rotating

machines, MRI, transformers, fault current limiters and also
in the fusion industry

• Design development of superconductingmachines andmag-
nets concerning all possible trade-offs

• Protection of SCs and transformers
• The manufacturing process of superconductors and super-

conducting components
• Using DTs for real-time modelling, monitoring, fault detec-

tion and design of superconducting devices
• Modelling sophisticated multiphysical characteristics of

superconducting devices
• Improving the performance of superconducting quantum

computers, and Superconducting Quantum Interference
devices

• Calculating electron-boson spectral function
• Predicting the maintenance time of superconducting devices
• Weak-points detection
• Modelling the characteristic of superconductors
• Using autoencoders together with other AI and signal-

processing techniques for fault detection in superconducting
devices

Concluding remarks

AI as a strategic technology is developing fast and could cer-
tainly change manufacturing, materials, physics, and engin-
eering fields by increasing the quality of processes, improving
the efficiency of systems production through predictive main-
tenance, finding optimal solutions, and contributing to real-
time monitoring, fault detection and asset management. AI
offers important efficiency, productivity, and agility benefits
that can strengthen the competitiveness of a technology such
as superconductivity and improve its applications. AI has the
potential to offer tools for learning, knowledge discovery, and
decision-making that try to outperform human abilities and
can be used in many applications.

AI-related techniques involve a multidisciplinary approach
of using mathematical models, statistics, graphs, databases,
and business/scientific logic. Hardware manufacturing in a
scalablemanner could contribute to large systems construction
at a reasonable cost. Superconducting optoelectronic integra-
tion could also contribute to scalable quantum technologies
and lead to new ways of leveraging the strengths of quantum-
neural hybrid systems.

Current Research indicates that with the introduction of
CPS, machines will be able to communicate with each other
and decentralised control systems will be able to optimise pro-
duction, mainly through the integration of several paradigms,
like AI, DT, IoT, and Cloud Computing.

The exponential growth of data, the digital transformation
process and all the related technological evolutions have to be
complemented by a long-term industrial strategy that prepares
the governments and society in interaction with stakeholder-
s/industries for the digital and low carbon economy. The integ-
ration of emergent, smart and AI-based technologies arises as
the main strategy to support the trends in the superconduct-
ivity area, which main current challenges involve additional
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production capacity, high production costs, inflationary effects
and real market demand.
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