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Despite significant progress in resonant inelastic x-ray scattering (RIXS) experiments on cuprates at the
Cu L-edge, a theoretical understanding of the cross section remains incomplete in terms of elementary
excitations and the connection to both charge and spin structure factors. Here, we use state-of-the-art,
unbiased numerical calculations to study the low-energy excitations probed by RIXS in the Hubbard
model, relevant to the cuprates. The results highlight the importance of scattering geometry, in particular,
both the incident and scattered x-ray photon polarization, and they demonstrate that on a qualitative level
the RIXS spectral shape in the cross-polarized channel approximates that of the spin dynamical structure
factor. However, in the parallel-polarized channel, the complexity of the RIXS process beyond a simple
two-particle response complicates the analysis and demonstrates that approximations and expansions that
attempt to relate RIXS to less complex correlation functions cannot reproduce the full diversity of RIXS
spectral features.
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I. INTRODUCTION

When ∼1023 electrons and ions come together to form a
solid, most of the well-known properties of each constituent
are lost, and understanding such a complex state of matter
can be difficult. This is especially the case in the presence
of strong electron-electron interactions, and many spec-
tacular phenomena such as magnetism, superconductivity,
or Mott insulating behavior exist in so-called strongly
correlated systems. Nevertheless, the low-energy physics
can often be described in terms of almost noninteracting
quasiparticles (also called elementary collective excita-
tions) carrying specific quantum numbers—e.g., magnons,
phonons, or orbitons. While such descriptions are a priori
relatively simple, understanding the specific properties of
these quasiparticles remains a challenging task.
Experimentally, one of the primary ways to gather

information about the collective excitations is to map their
dispersion—i.e., to understand if and how these

quasiparticles can move through the solid. Unfortunately,
there are not that many techniques that can perform this
task. Perhaps the most well known and most widely used is
inelastic neutron scattering (INS). However, this technique
has a number of limitations (requirement of large sample
sizes, limited dynamic range, availability of research
reactors, or spallation sources). Other techniques such as
optical Raman scattering and nonresonant inelastic x-ray
scattering (IXS) also can provide some information
about multimagnon, phonon, and electronic excitations.
Particular attention has been devoted recently to the
development of resonant inelastic x-ray scattering (RIXS),
a complementary technique for understanding the energy
and dispersion of elementary excitations, including elec-
tronic, lattice, magnetic, and dipole forbidden orbital
excitations.
RIXS is an experimental technique in which the trans-

ferred energy, momentum, and polarization associated
with incident and scattered x-ray photons can be measured
and analyzed to reveal information about the elementary
excitations of a system [1,2]. RIXS possesses atomic
specificity with incoming photons resonantly tuned to a
specific atomic absorption edge. For transition metal L and
K edges in the soft and hard x-ray regimes, these x-ray
photons carry momentum comparable to electronic crystal
momenta, making RIXS a particularly unique and powerful
tool for characterizing excitations across a significant
portion of the electronic Brillouin zone. Combined with
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additional advantages such as bulk sensitivity and polari-
zation control, RIXS has emerged as an influential tech-
nique for studying various condensed matter materials.
Although RIXS by nature has the ability to measure

elementary excitations for numerous materials, it has shown
an especially strong ability for characterizing elementary
excitations in transition-metal oxides which manifest strong
correlations [3–21]. In particular, RIXS has been shown to be
quite useful for the study of high-temperature superconduct-
ing materials: As magnetic fluctuations were proposed as
candidates for the superconducting pairing glue, obtaining
their dispersion relation can be crucial for unraveling the
mystery of high Tc [22].
The direct RIXS process consists of two dipole tran-

sitions, as shown schematically in Fig. 1 for the Cu L edge.
In the first step, an incoming photon excites the ground
state by promoting an electron from a filled core shell
(Cu 2p) into the valence shell (Cu 3d). An intermediate
state manifold forms following the charge and spin shake-
up that accompany the introduction of a local core-hole
potential and this new carrier in the valence shell. In the
second step, an electron from the valence shell, possessing
appropriate atomic character, fills the core hole, accom-
panied by an outgoing photon, which leaves the system in
an excited final state.
Because of the complexity of this process and the

presence of the intermediate state, an interpretation of
RIXS spectra has been hindered by an incomplete under-
standing of how it may be related to other, more funda-
mental, response functions governing spin, charge, lattice,
and orbital excitations. In addition, it is well known that
polarization plays a key role in understanding selective
excitations in Raman spectroscopy [23]; however, a full
polarization analysis involving both incident and scattered
x rays has become possible now in experiment, and it is
only shown to be important theoretically for spin-flip
excitations [24]. One would expect that a more complete
understanding, at a fundamental level, could be obtained by
analyzing the full theoretical RIXS cross section, account-
ing for the influence of both the incident and scattered light
polarization for a given experimental scattering geometry.
To better understand the RIXS cross section from a

theoretical perspective, here we explore a rather general
question: What low-energy excitations are measured by
RIXS, particularly in cuprates at the Cu L edge? There
certainly are a number of ways to address this question
analytically and numerically. Here, our interest is confined to
the low-energy excitations, which involve spin and/or charge
degrees of freedom, neglecting both lattice and higher-
energy orbital or charge-transfer excitations in this work.
Our aim is to qualitatively understand which excitations are
encoded in the RIXS cross section, as well as any con-
nections to both spin and charge-dynamical structure factors,
under different scattering conditions; we quantitatively

compare numerical estimates of the full RIXS cross section
with various approximations to tease out this information.
Naively, one may expect the Cu L-edge RIXS cross

section to be the resonant analog of the hard x-ray
nonresonant IXS [25,26], whose response is the charge-
dynamical structure factor. It then may seem counterintui-
tive that RIXS at the Cu L edge rose to prominence for the
successful empirical measurement of the spin (magnon)
dispersion in undoped cuprates, making it a complementary
experimental probe to the well-established inelastic
neutron scattering [5,6]. With theoretical support [24,27],
experiments on doped cuprates proved sensitive to mag-
netic excitations, with a similar cross section to the spin
dynamical structure factor, regardless of doping level
[8–18]. These observations were interpreted in terms of
persistent magnetic excitations up to an unexpectedly high
doping level. However, this semiempirical connection to
the spin dynamical structure factor has been based pri-
marily on approximate theoretical and numerical treatments
for the full RIXS cross section. The fast collision approxi-
mation [28–30] and the effective operator approach [31]
suggested that only single magnon excitations or Sðq;ωÞ
should be measured by RIXS at the Cu L edge [27,31,32].
More sophisticated treatments—the ultrashort core-hole
lifetime (UCL) expansion [33–35] and the UCL-inspired
ansatz [36]—highlighted that RIXS should also be sensi-
tive to bimagnon excitations. A further extension of
UCL also pointed out the importance of three-magnon
excitations [37]. However, these studies made no explicit
comparison between the approximations and the full RIXS
cross section, nor have they concentrated on the sensitivity
of RIXS to the charge dynamical structure factor.
Perhaps more importantly, these approximations suffer

from several severe limitations. First, the fast collision
approximation (or the effective operator approach)
[27,31,32] relies on an estimation of the dynamics only
at the site where the core hole has been created in the
intermediate state. However, the intermediate state is drawn
from a manifold of states, which differ from the ground
state not only locally, at the site where a core hole is
created, but also on neighboring sites due to hopping or
spin exchange associated with the dynamical screening
process. As a result, and especially upon doping, this
approximation fails to capture key elements of the full
RIXS process. Second, the UCL approximation relies on
the assumption that the energies of the intermediate-state
manifold are much smaller than the inverse core-hole
lifetime Γ, which allows an approximation based on only
the first few (two) terms in the UCL Taylor-series-like
expansion. However, this assumption need not hold,
especially in “itinerant,” doped systems where a number
of intermediate states may have energies ∝ t ∼ Γ, making
the UCL a nonconvergent approximation.
In this paper, we study the low-energy excitations of

RIXS at the Cu L edge in an unambiguous way by
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numerically evaluating the cross section for a two-
dimensional Hubbard model comprising “effective” Cu
3d orbitals supplemented by local Cu 2p core levels. Using
exact diagonalization, which previously was applied to the
study of paramagnons in cuprates [24], we compare the
exact RIXS cross sections to approximate cross sections for
the same model using the same method. The intrinsically
correlated nature of our Hamiltonian distinguishes this
study from the analytically exact RIXS calculations for the
case of completely uncorrelated electrons [38]. In the next
section, we present and compare numerical results for the
exact and approximate RIXS cross sections and discuss
content of the excitations and consequences for experi-
ments. The paper ends with conclusions and appendixes
that contain details and longer derivations.

II. NUMERICAL RESULTS

A. Exact RIXS cross section

The RIXS cross section at the Cu L edge is [1,32]

Ieðq;ωÞ ¼
X
f

jhfjOq;ejiij2δðωþ Ei − EfÞ; ð1Þ

where jii (jfi) is the initial (final) state of the system in the
RIXS process with energy Ei (Ef), transferred momentum
(energy loss) is q≡ ki − kf (ω≡ ωi − ωf), where qi and
qf (ωi and ωf) are the incoming and outgoing photon
momenta (energy), and e ¼ ei · ðefÞ† is the tensor that
describes the incoming (i) and outgoing (f) photon polar-
izations. Here, the operator Oq;e ¼ 1=

ffiffiffiffi
N

p P
je

iq·jOj;e and

Oj;e ¼ D†
j;ef

1

ωi −Hþ ıΓ
Dj;ei ; ð2Þ

which describes the evolution of the system in the
RIXS experiment from the initial state to the final state
via the intermediate states accessible via the core-hole to
valence-band dipole transitions. N is the number of lattice
sites in the system. The dipole transition operator Dj;e ¼P

σ;α;βðAe
αp

†
jασdjσ þ H:c:Þ with pjασ (djσ) annihilates a

hole in the 2p (3d) shell with spin σ:Ae
α is the matrix

element of the dipole transition between the 2pα orbitals
and the 3dx2−y2 orbital written as Ae

α ¼ hdx2−y2;σjϵ̂ · r̂jpασi
for polarization ϵ̂. Γ is the inverse core-hole lifetime. Note
that with the exception of the schematic in Fig. 1, “hole
notation” has been used throughout the paper, such that the
dipole transitions at the Cu L edge correspond to transitions
from the initial 3d�12p0 state to a 3d�02p1 intermediate
state, and finally from the intermediate state to the
final-state configuration. Here, 3d� corresponds to holes
nominally (Zhang-Rice singlets [39]) in the single-band
notation.
Here, we use the single-band Hubbard model as it carries

the key features of correlated materials in the low-energy
regime, which is the relevant energy regime for the study of
charge and spin excitations for cuprates in RIXS measure-
ments. The single-band results can be applied directly to
cuprates and can be generalized to other multiorbital
correlated materials. The Hamiltonian H defined on a
2D square lattice describes the relevant interactions of
the “effective” 3d and 2p orbitals, consisting of two parts:

H ¼ H þHc; ð3Þ

H ¼ −t
X
hi;ji;σ

d†iσdjσ − t0
X

hhi;jii;σ
d†iσdjσ þ U

X
i

ndi↑n
d
i↓; ð4Þ

Hc ¼ ðϵd − ϵpÞ
X
iασ

npiασ þ Uc

X
iασσ0

ndiσn
p
iασ0

þ λ
X
iαα0σσ0

p†
iασχ

σσ0
αα0piα0σ0 : ð5Þ

The first part, Eq. (4), is the well-known single-band
Hubbard model with the nearest (next-nearest) neighbor
hopping t (t0) and on-site Hubbard repulsion U. Here, the
operator d† in the single-band Hubbard model creates a
“3d�” hole, which should be distinguished from the actual
Cu 3dx2−y2 hole in the multiband model. The second part,
Eq. (5), describes (i) the energy splitting between the 2p
and the 3d shells through the difference in site energy
ϵd − ϵp, (ii) the repulsion between the 2p and the 3d holes

3d 9

2p6

3d10

2p5 2p6

?  ?

initial state intermediate state nal state

D D+

3d 9 / 3d10

FIG. 1. A schematic that illustrates the RIXS process at the Cu L-edge appropriate for cuprates.
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(the “core-hole potential”) Uc, and (iii) the spin-orbit
coupling in the 2p shell λ with the matrix elements
χσσ

0
αα0 ≡ hpασjl · sjpα0σ0 i, where the l · s term represents the
spin-orbit coupling operator.
The RIXS cross section is calculated using exact

diagonalization on a 12-site cluster. In this cluster, momen-
tum points (2π=3,0) and (π=2, π=2) are accessible, provid-
ing information along both the Brillouin zone axis and
diagonal, relevant for RIXS experiments. As the Cu 2p
core levels and the spin-orbit coupling are included
(which also means that the total spin is not a good quantum
number in the intermediate state), the Hilbert space size is
about 107. Ground-state eigenvectors and eigenvalues were
obtained using the implicitly restarted Arnoldi method
encoded in the Parallel ARPACK [40] libraries. The cross
section itself was obtained using the biconjugate gradient
stabilized method [41] and continued fraction expansion
[42]. The numerical technique has been applied previously
to calculate RIXS at the Cu K and L edges [24,25].
Numerical results were obtained for parameters that can
reproduce the low-energy physics for cuprates relatively
well: ϵd − ϵp ¼ 2325t (which gives the typical splitting
between the Cu 2p and the Cu 3d shell of 930 eV if
t ¼ 0.4 eV), Uc ¼ 4t, λ ¼ 32.5t, Γ ¼ t, U ¼ 8t, t0 ¼ 0.3t
(a typical value of the next-nearest-neighbor hopping in
hole language). In this paper, all RIXS spectra are calcu-
lated at the Cu L3 resonance and at the Cu sites occupied by

a single hole in the 3d orbital for the ground state: The peak
in the x-ray absorption spectroscopy (XAS) spectrum to
which the RIXS resonance corresponds is shown in Fig. 7
in Appendix C. For doped systems, we investigate the
resonance where the character of the intermediate state is
similar to that in the undoped case on the core-hole site.
The angle between the incident and the scattered photons is
set to 50°, with the scattering plane parallel to xz, i.e.,
perpendicular to the xy plane on which we define the 2D
Hubbard Hamiltonian, and the incoming polarization is
chosen to be π. This scattering geometry is consistent with
that used most commonly in RIXS measurements for
cuprates [9–11,13–16]. The relation between polarization
and the transferred momenta [27,30,31,43] follows
from this scattering geometry: ei ¼ ðsin θ; 0; cos θÞ,
ef ¼ ½− cosðθ − 40°Þ; 0; sinðθ − 40°Þ� [ef ¼ ð0;−1; 0Þ]
for outgoing π (σ) polarization, θ ∈ ½0°; 130°�, and the
angle θ is related to the transferred momentum via
kx ¼ 1.07π sinðθ − 65°Þ. The calculated RIXS spectra will
be presented in Figs. 2–5. The comparison with the
approximated spectra will be presented in Sec. II C below.

B. Approximate cross section

The approximations follow from integrating out the core-
hole degrees of freedom using two approaches. We first
assume that the energy of the incoming photon ωi is tuned

FIG. 2. Exact RIXS cross sections and approximations calculated using exact diagonalization. Top (bottom) panels show spectra for
the π − σ (π − π) polarization geometries. Left, middle, and right panels show RIXS spectra calculated for n ¼ 0.83 (“hole-doping”),
n ¼ 1 (“half-filling”), and n ¼ 1.17 (“electron-doping”) electron fillings, respectively. The spectra are summed over all momenta along
the nodal direction and along the ky ¼ 0 direction, which are accessible in RIXS on a 12-site cluster, weighted with the RIXS form

factors, i.e., SðωÞ ¼ P
qjWπ−σ j2Sðq;ωÞ, ~NðωÞ ¼ P

qjWπ−πj2 ~Nðq;ωÞ and similarly for S0ðωÞ and ~N0ðωÞ. The elastic response has been
removed in each panel.
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to the main resonance at the Cu L3 edge, as dictated by Hc
[44]. This is equivalent to a projection into a subspace with
only one 3d� hole on the core-hole site in either the initial
state jii or the final state jfi. We then perform the UCL
approximation by expanding the RIXS operator, Eq. (2), in
a power series inH=Γ and only keeping the first two terms.
See Appendix A for details. These approximations can be
written separately for the two polarization conditions as
follows:
π − σ RIXS in the UCL approximation:

IUCLπ−σ ðq;ωÞ ¼jWπ−σj2fSðq;ωÞ þ S0ðq;ωÞg; ð6Þ

Sðq;ωÞ ¼
X
f

jhfjSzqjiij2δðωþ Ei − EfÞ; ð7Þ

S0ðq;ωÞ ¼ z2t2

N2Γ2

X
f

����hfj
X
k;k0

ε−k0þkþqS
z
k
0

× d†k;σd−k0þkþq;σjii
����
2

δðωþ Ei − EfÞ; ð8Þ

where the local RIXS form factor Wπ−σ ¼ −ı2 sin θ=ð3ΓÞ,
the spin operator Szq ¼ 1=ð2 ffiffiffiffi

N
p ÞPkðd†k;↑dqþk;↑−

d†k;↓dqþk;↓Þ, z ¼ 4 is the 2D coordination number, and
the 2D structure factor is εk ¼ γk þ t0ηk=t, with γk ¼
ðcos kx þ cos kyÞ=2 and ηk ¼ cos kx cos ky. The structure
factor εk has A1g symmetry. Note that the first term of the
expansion Sðq;ωÞ has the form of the spin dynamical
structure factor, while the second term S0ðq;ωÞ is a rather
complicated four-particle response that probes spin and
charge excitations. The latter corresponds to the three-spin
Green’s function (see Appendix B) and to joint spin and
charge excitations.

π − π RIXS in UCL approximation:

IUCLπ−π ðq;ωÞ ¼jWπ−πj2f ~Nðq;ωÞ þ ~N0ðq;ωÞg; ð9Þ

~Nðq;ωÞ ¼
X
f

jhfj ~nqjiij2δðωþ Ei − EfÞ; ð10Þ

~N0ðq;ωÞ ¼ z2t2

NΓ2

X
f

����hfj
X
k

εqþk
~d†k;σdqþk;σjii

����
2

× δðωþ Ei − EfÞ; ð11Þ
where the constrained density operator is ~ni ¼

P
σ
~d†iσ ~diσ

with constrained fermions ~d†iσ ¼ d†iσð1 − niσ̄Þ and
~diσ ¼ ð1 − niσ̄Þdiσ , and the local RIXS form factor
Wπ−π ¼ −2 sin θ cosðθ − 40°Þ=ð3ΓÞ.
Before evaluating the correlation functions, we want to

highlight that none of these approximations gives the
standard charge dynamical structure factors for the paral-
lel-polarization channel. The first term of the expansion,
~Nðq;ωÞ, is not the standard charge dynamical structure
factor. It represents a more complicated four-particle
response function in the original space of unprojected
fermions. In the following, it carries information about
projected charge excitations, which should in no way be
confused with information about the full charge response.
That RIXS does not probe the standard charge response
stems from the fact that initial states with double occupancy
on the core-hole site cannot be excited in the RIXS process
because of the Pauli principle. The second term ~N0ðq;ωÞ,
a complicated four-particle response function as well,
corresponds to two-spin or bimagnon excitations (see
Appendix B) and other symmetry-projected charge exci-
tations, represented again by a correlator beyond the
familiar two-particle charge response.

C. Comparing exact and approximate results

In the following, we present a systematic comparison of
the full RIXS spectra with the approximations using the
UCL expansion for the two polarization conditions. As a
momentum-resolved technique, RIXS has the power to
measure the dispersion of elementary excitations, which is
one of its main advantages compared to traditional optical
or Raman scattering, where the momentum transfer is
limited to q ∼ 0 [23]. However, there are limitations in
cluster size, as well as a limited number of poles using a
finite-size cluster. Thus, summing over all the accessible
momentum points (results as shown in Fig. 2) gives us a
complete picture of the energies and the distribution of
intensities for the excitations, so that the comparisons to the
approximations can be made in a single shot. To better
quantify this comparison, we also calculate and compare
the total spectral weight carried by the excitations,
cf. Fig. 3. Nevertheless, in Sec. II D, we compare exact
RIXS cross sections and approximations at the momentum

~
~

DopingDoping

FIG. 3. Momentum and energy integrated spectral weight
for full RIXS

R
1.6t
0 IðωÞdω and the various approximations

S ¼ R
1.6t
0 SðωÞdω, ~N ¼ R

1.6t
0

~NðωÞdω, S0 ¼ R
1.6t
0 S0ðωÞdω, ~N0 ¼R

1.6t
0

~N0ðωÞdω with SðωÞ, ~NðωÞ, S0ðωÞ, ~N0ðωÞ defined as in the
caption of Fig. 2, RIXS spectra. The π − σ (π − π) relative
polarizations are shown on the left (right) panels, respectively.
Note that the spectral weight ~N ¼ 5 × 10−5ðeVÞ−2 in the half-
filled case does not appear in the figure. All momenta along the
nodal direction and along the qy ¼ 0 direction accessible on a
12-site cluster are taken into account (elastic response excluded).
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points (2π=3,0) and (π=2, π=2) and discuss connections to
experiments.
The full cross sections are shown in Fig. 2 for two

polarization channels: (i) the cross-polarized channel
[π − σ with π (σ) incoming (outgoing) polarization] and
(ii) the parallel-polarized channel [π − π with π (π) incom-
ing (outgoing) polarization]. For each channel, the spectra
are calculated for three different doping levels (n ¼ 0.83,
hole doping, n ¼ 1, half filling, and n ¼ 1.17, electron
doping). The π − σ RIXS spectra presented here agree with
those presented in Ref. [24]. The approximate cross
sections SðωÞ and S0ðωÞ for cross polarization and ~NðωÞ
and ~N0ðωÞ for parallel polarization are also shown in Fig. 2.
The results for both full and approximated RIXS are shown
for a Lorentzian broadening with half width at half
maximum ðHWHMÞ ¼ 0.025t for the energy transfer.
Note that the spectra in Fig. 2 correspond to a momentum
summation over all points accessible in the 12-site cluster,
to provide a holistic picture of the character of excitations
probed by RIXS and the utility of various approximations
(see caption of Fig. 2 for details).
First note the results in the cross-polarized channel (the

π − σ channel). On a qualitative level, the line shape of the
full RIXS cross section can be reproduced well by the spin
dynamical structure factor Sðq;ωÞ (the first term of the UCL
approximation). This is true at half filling, where all charge
excitations have been gapped out, while in either the electron-
or hole-doped cases, one can observe some relatively small
discrepancies between the two spectra. When adding higher-
order terms from the effective expansion, to a large extent this
observation remains unchanged since these terms encode
similar excitations to Sðq;ωÞ together with excitations of
mixed charge and spin character, as can be seen readily from
the form of the operator in Eq. (8).
However, on a quantitative level, this comparison breaks

down, with discrepancies in the overall intensity and
integrated spectral weight which can become very large
(see Fig. 3). While one may have expected that higher-order
terms in the effective expansion should provide a more
satisfactory qualitative and quantitative agreement, they do
not help in reducing the differences; on the contrary, these
additional terms actually enhance the quantitative mis-
match. Note that the first two terms of the UCL expansion
suggest larger spectral weight for the hole-doped case
compared to that with electron doping, in contrast to the
behavior for the RIXS cross section. This suggests that the
differences cannot be attributed to a simple rescaling factor.
The quantitative mismatch between RIXS at the Cu L

edge and the approximations highlights the role that the
intermediate-state wave function plays in the RIXS spectra,
just as in the case for RIXS at the Cu K edge [25]. RIXS is
an intrinsic four-particle process, where the wavefunction
overlaps between the ground state and intermediate states
and between intermediate states and final states both play
an important role. Neglecting the details of the

intermediate-state wavefunction might still provide infor-
mation on the fundamental excitation energies, but unfortu-
nately, it cannot provide reasonable spectral weights on a
quantitative level. For the discussions in terms of the role of
these intermediate states in XAS, see Appendix C. That
being said, both numerically and empirically, in the cross-
polarized scattering geometry, the RIXS cross section
qualitatively corresponds to the spin dynamical structure
factor, which encodes information about spin excitations at
the two-particle level, underscoring RIXS utility as a
complementary probe to inelastic neutron scattering.
An altogether different situation arises in the parallel-

polarized channel (the π − π channel). While a comparison
between the RIXS spectrum and the “projected” charge
excitations produces a modest qualitative agreement
between the line shapes, both missing peaks and significant
differences in the spectral weights undermine any
quantitative value in this comparison. The addition of
the higher-order terms seems to be needed for a better
qualitative comparison of the line shapes, although both
terms support similar spectral excitations based on the form
of the operators in Eqs. (10) and (11), and a spectral weight
analysis precludes any quantitative agreement. In both
cases, while the RIXS spectral line shape may be approxi-
mated by the two expansion terms, neither provides a
faithful representation for the proper two-particle charge
response encoded in the simple dynamical structure factor,
placing statements about the true charge excitation char-
acter of the RIXS cross section on less solid footing.
Similar analysis with different values of core-hole potential
Uc leads to similar conclusions (see Appendix D).

D. Consequences for RIXS experiments

The preceding section presented a comparison between
cross sections integrated in momentum, as well as energy
for a total spectral weight analysis. In this section, we
show spectra at two particular momenta: q ¼ ð2π=3; 0Þ
and q ¼ ðπ=2; π=2Þ (see Figs. 4 and 5) to underscore those
results, shown in a context amenable to experiment. When
doped, the Hubbard model, and by extension cuprates,
will possess spin and charge excitations in a similar low-
energy regime which will appear, either directly or in a
more complicated way reflecting the complexity of the
cross section, in the RIXS spectrum for the crossed- and
parallel-polarization channels, respectively. Thus, to
satisfactorily distinguish between the magnetic and charge
channels, or two-spin excitations, one must perform
measurements that can discriminate the outgoing polar-
izations. Unfortunately, to this point, RIXS experiments
have been unable to fully distinguish between the
cross-polarized and parallel-polarized channels, making
some statements with the help of a careful analysis
of experimental RIXS scattering geometry. The newly
constructed, state-of-the-art RIXS end station at ESRF
now provides an opportunity to perform such
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measurements (cf. Ref. [17]); other end stations (currently
operational or to be commissioned in the coming years)
also would allow for the differentiation between the
crossed- and parallel-polarized channels.

Even with outgoing polarization discrimination, in either
the crossed- or parallel-polarized channels, one needs to
carefully invoke either Sðq;ωÞ or ~Nðq;ωÞ as approxima-
tions for the full RIXS cross section. This especially may be

FIG. 4. Cross sections at q= ð2π=3;0Þ with the elastic response removed. Top (bottom) panels show spectra for the π-σ (π-π)
polarization. Left, middle, and right panels show RIXS spectra for n ¼ 0.83, n ¼ 1, and n ¼ 1.17 electron fillings, respectively. The
approximate spectra are weighted with the RIXS form factors, i.e., Sðq;ωÞ → jWπ-σ j2Sðq;ωÞ, ~Nðq;ωÞ → jWπ-πj2 ~Nðq;ωÞ and similarly

for S0ðq;ωÞ and ~N0ðq;ωÞ.

FIG. 5. Cross sections at the q ¼ ðπ=2; π=2Þ point with the elastic response removed. Top (bottom) panels show spectra for the π-σ
(π-π) polarization. Left, middle, and right panels show RIXS spectra calculated for n ¼ 0.83, n ¼ 1, and n ¼ 1.17 electron fillings,
respectively. The approximate spectra are weighted with the RIXS form factors, i.e., Sðq;ωÞ → jWπ-σ j2Sðq;ωÞ, ~Nðq;ωÞ →
jWπ-πj2 ~Nðq;ωÞ and similarly for S0ðq;ωÞ and ~N0ðq;ωÞ.
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true when analyzing RIXS spectral weights as a function of
doping. None of these approximations addresses inter-
mediate-state effects or, equivalently, differences in the
cross section with changes in the incoming photon energy
[25]. Thus, to address the full resonant profile, one always
needs to calculate the full RIXS cross section.

III. CONCLUSIONS AND DISCUSSIONS

We have performed small-cluster exact diagonalization
calculations using the single-band Hubbard model plus the
Cu 2p core, to study the RIXS L-edge cross sections using
the Kramers-Heisenberg formula [Eqs. (1) and (2)], and we
compare this with the approximate RIXS cross section
obtained from the UCL expansion. The results show that
the UCL approximation cannot always reproduce the full
RIXS cross section. In other words, one must carefully
apply approximations for calculating the RIXS cross
section. The nonlocal character of the intermediate state
can become particularly important in correlated ground
states with longer-range entanglement. Therefore, we
suggest the full RIXS simulations will be needed to verify
the character of excitations.
In the cross-polarized channel, we have shown that on a

qualitative level, Cu L-edge RIXS line shapes correspond
to the spin dynamical structure factor Sðq;ωÞ, consistent
with lowest-order approximations as postulated by the fast
collision approximation (or the effective operator approach)
[24,27,31,32] (see Appendix E). As a consequence, we
expect that the line shapes reported from cross-polarized
RIXS experiments can be reproduced to some extent by
theoretical modeling of the spin dynamical structure factors
(or empirically through inelastic neutron scattering experi-
ments when also considering differences in the effective
matrix elements between the two techniques). However, the
detailed analysis in this paper suggests that a quantitative
comparison between RIXS and the two-particle spin and
charge dynamical structure factors would be impractical.
One should not expect a meaningful comparison between
different spectral weights obtained from these different
techniques, either experimentally or from simulation.
In the parallel-polarized channel, the situation is further

complicated by the operator form taken by the approx-
imations themselves. On a qualitative level, the primary
contributions seem to follow from higher-order terms
~N0ðq;ωÞ, with a notable exception at half filling (see
Appendix E). However, any precise quantitative compari-
son to experiment would require calculating the full RIXS
cross section. At the same time, none of the terms in the
approximations corresponds to proper two-particle charge
excitations, but rather, they inherently reflect the complex-
ity of the RIXS process. Thus, while line shapes in RIXS
should closely resemble the line shapes of the (projected)
charge excitations, the spectral weights may be quite
different, with a more complicated analysis required to
tease out the character of various spectral peaks.

In modeling the RIXS spectra for strongly correlated
materials, we use the single-band Hubbard model, which
is a simple model that possesses the key features of
correlated materials relevant to charge and spin excitations
in the low-energy regime. As the key physics for the single-
band Hubbard and the multiband Hubbard models remain
similar, we expect that the conclusion of our study can be
generalized to a multiband Hubbard system: RIXS spectra
in the cross-polarized channel may connect to the spin
dynamical structure factor, but the full description of RIXS
goes beyond the simple two-particle response function.
Besides cuprates, RIXS has also been utilized to measure

excitations in iron-pnictide superconductors [45,46], f-
electron systems [47], and many other materials [48–50],
including out of equilibrium [51]. Indeed, the idea of using
polarization control to separate the spin-flip and non-spin-
flip excitations can be generalized to all kinds of materials.
When the incoming and outgoing photon polarizations are
perpendicular, because of angular-momentum (spin) con-
servation, RIXS qualitatively measures spin-flip excitations
regardless of the details of the microscopic Hamiltonian.
This makes RIXS a powerful technique for separately
measuring the spin and charge excitations.
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APPENDIX A: DERIVATION OF THE UCL
APPROXIMATION FOR RIXS

AT THE CU L EDGE

The UCL approximation should be valid when all the
relevant eigenenergies of the intermediate-state Hamiltonian
H are much smaller than the inverse core-hole lifetime Γ.
We use the following spectral decomposition:

1

ωi −Hþ iΓ
¼

X
jNi

jNihNj 1

ωi − EN þ iΓ
; ðA1Þ

where fjNig are eigenstates ofH with energy fENg. We are
interested in RIXS at the resonant edge between the 2p03d�1

initial configuration and the 2p13d�0 intermediate-state
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configuration. (All expressions are presented in hole lan-
guage.) This means that we need to exclude all intermediate
states jNi that contain one hole in the d orbital on site
j, i.e., on the core-hole site. We add a projection operator ~Pj

and rewrite the above expression as

X
jNi

jNihNj 1

ωi − EN þ iΓ
→

X
jNi

~PjjNihNj ~Pj
1

ωi − EN þ iΓ
:

ðA2Þ

We define the following Hamiltonians H̄ ¼ H þ
Uc

P
iασσ0n

d
iσn

p
iασ0 and H̄c ¼ Hc − Uc

P
iασσ0n

d
iσn

p
iασ0 . Note

that H̄ and H̄c commute (and H ¼ H̄ þ H̄c), since the
intermediate states of RIXS are such that they always
contain either a hole in the 2p shell or in the 3d shell
(guaranteed by the projection operators ~Pj). Then, we obtain

jNi ¼ jnijnci EN ¼ εn þ εnc ; ðA3Þ
where jni are eigenstates of H̄ with energy εn, and jnci are
eigenstates of H̄c with energy εnc. Consequently, we can
write

1

ωi −Hþ iΓ
¼

X
jni;jnci

~Pjjnihnjncihncj ~Pj

×
1

ωi − εn − εnc þ iΓ
: ðA4Þ

Note that with a single hole in the p shell, there are just
two eigenstates of H̄c: nc ∈ jL2i; jL3i with energies εL2

,
εL3

. They correspond to the two “j” eigenstates j ¼ 1=2
and j ¼ 3=2, respectively, split by the spin-orbit coupling
∝ λ. (We note that j represents the angular momentum and
j represents site j on the cluster.) This implies

1

ωi −Hþ iΓ

¼
X
jni

~PjjnihnjL2ihL2j ~Pj
1

ωi − εn − εL2
þ iΓ

þ
X
jni

~PjjnihnjL3ihL3j ~Pj
1

ωi − εn − εL3
þ iΓ

: ðA5Þ

Resonance approximation.—We assume that the incom-
ing x-ray photons are tuned to the L3 resonance, i.e.,
ωi ≃ εL3

. Since λ ≫ Γ (and all eigenenergies εn ≪ λ), we
can neglect the contribution from the L2 resonance and
obtain

1

ωi −Hþ iΓ
¼

X
jni

~PjjnihnjL3ihL3j ~Pj
1

−εn þ iΓ
: ðA6Þ

UCL expansion.—We adopt the UCL expansion
[37,52,53] for Cu L-edge RIXS to obtain

1

ωi −Hþ iΓ
¼ ~PjjL3ihL3j

Xþ∞

l¼0

H̄l

ðiΓÞlþ1
~Pj: ðA7Þ

This means that the RIXS operator can be rewritten as

Oj;e ¼
1

iΓ
D†

j;ef
~PjjL3ihL3j

Xþ∞

l¼0

H̄l

ðiΓÞl
~PjDj;ei : ðA8Þ

Second-order UCL approximation.—Keeping only
terms with l ¼ 0 and l ¼ 1 gives

Oj;e ¼ Oð1Þ
j;e þOð2Þ

j;e; ðA9Þ

Oð1Þ
j;e ¼

1

iΓ
D†

j;ef
~PjjL3ihL3j ~PjDj;ei ;

Oð2Þ
j;e ¼

1

ðiΓÞ2D
†
j;ef

~PjjL3ihL3jH̄ ~PjDj;ei : ðA10Þ

The validity of this approximation has been discussed in
detail in the main text of the paper.
Change of projection operators.—It is convenient to use

another operator, Pj, which projects to the sector with no
double occupancy in the d level on site j, i.e., where the
core hole is created. This gives

~PjDj;ei ¼ Dj;eiPj: ðA11Þ

A similar expression also holds for the D†
j;ef

dipole
operator.
The l ¼ 1 term.—Next, we evaluate

PjD
†
j;ef

jL3ihL3jH̄Dj;eiPjjii: ðA12Þ
We note that

PjD
†
j;ef

jL3ihL3jH̄mjDj;eiPjjii ¼ 0; ðA13Þ
where

H̄mj ¼ −t
X
mðjÞ;σ

ðd†mσdjσ þ H:c:Þ − t0
X

m0ðjÞ;σ
ðd†m0σdjσ þ H:c:Þ

þ Uc

X
ασσ0

ndjσn
p
jασ0 þ Undj↑n

d
j↓; ðA14Þ

since all terms in the Hamiltonian that contain site j will
vanish when “sandwiched”’ between the dipole operators
D and evaluated on the initial state jii. Here, mðjÞ and
m0ðjÞ are nearest and next-nearest neighbors of site j.
Thus, the following expression holds:

PjD
†
j;ef

jL3ihL3jH̄Dj;eiPjjii ¼ PjD
†
j;ef

jL3ihL3j
× ðH̄ − H̄mjÞDj;eiPjjii:

ðA15Þ
Commuting the Hamiltonian H̄ − H̄mj (which does not
contain operators on site j) with the operator Dj;ei and Pj

gives
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PjD
†
j;ef

jL3ihL3jH̄Dj;eiPjjii ¼ PjD
†
j;ef

jL3ihL3j
×Dj;eiPjðH̄ − H̄mjÞjii:

ðA16Þ

Since H̄jii ¼ Hjii ¼ Eijii ¼ 0 to set the energy to zero,
we are left with the following expression:
PjD

†
j;ef

jL3ihL3jDj;eiPjH̄mjjii. However, because of Pj,

the U and the Uc terms will never contribute, and
PjD

†
j;ef

jL3ihL3jDj;eiPjd
†
lσdjσÞjii ¼ 0 for any l ¼ m;m0.

Thus, we obtain

PjD
†
j;ef

jL3ihL3jH̄Dj;eiPjjii
¼ −PjD

†
j;ef

jL3ihL3jDj;ei

×

�
−t

X
mðjÞ;σ

ðd†jσdmσÞ − t0
X

m0ðjÞ;σ
ðd†jσdmσÞ

�
Pjjii:

ðA17Þ
Note the asymmetry in the above expression, i.e., the lack
of the Hermitian conjugate terms ∝ d†jσdmσ—this asym-
metry expresses the fact that in RIXS we are only sensitive
to sites on which the 3d holes reside.
Introducing so-called local matrix elements of RIXS, we

obtain

1

iΓ
PjD

†
j;ef

jL3ihL3jDj;eiPj ≡WePjnjPj þ ~WePjS
z
jPj;

ðA18Þ

where the local RIXS form factors follow from, e.g.,
Ref. [32] [cf. Eq. (2) and Fig. 1 in Ref. [32]]:

Wπ−σ ¼ −{2ðeiyefx − eixe
f
yÞ=ð3ΓÞ;

Wπ−π ¼ −2ðeixefx þ eiye
f
yÞ=ð3ΓÞ: ðA19Þ

Let PjnjPj ¼ ~nj [where ~nj ¼
P

σ ~njσ ¼
P

σ
~d†jσ ~djσ and

~d†jσ ¼ d†jσð1 − nj;−σÞ] and PjS
z
jPj ¼ Szj. Combining the

above equations, we finally arrive at the expression for
the RIXS operators in the UCL approximation,

Oð1Þ
j;e ¼ We ~nj þ ~WeS

z
j;

Oð2Þ
j;e ¼ t

iΓ
We

X
mðjÞ

~d†jσdmσ þ
t
iΓ

~WeS
z
j

X
mðjÞ

d†jσdmσ

þ t0

iΓ
We

X
m0ðjÞ

~d†jσdmσ þ
t0

iΓ
~WeS

z
j

X
m0ðjÞ

d†jσdmσ: ðA20Þ

Substituting the above expressions into Eq. (1) and
performing Fourier transformations, we obtain Eqs. (6)
and (9). As the first- (second-)order UCL terms have
real (imaginary) contributions, the interference terms
vanish and the full RIXS cross section consists of
separate first- and second-order UCL terms. Note that
if only these first two terms are considered in the UCL
approximation, then the RIXS spectrum does not depend
on the size of the core-hole potential Uc (the latter will
appear only in higher-order corrections in the UCL
approximation).

APPENDIX B: UCL APPROXIMATION
FOR THE t − J MODEL

For completeness, we have evaluated the UCL expan-
sion of the RIXS cross section for the t − J model—the
strong coupling expansion of the Hubbard model, valid
for the low-energy physics well below the energy scale
U ¼ 8t. For the qualitative discussions here, we can safely
neglect t0 and the three-site terms in this expansion.
Following similar steps as described in the previous
section for the Hubbard model, we obtain, for the π − σ
channel,

IUCLt−J
π−σ ðq;ωÞ ¼ jWπ−σj2

�X
f

jhfjSzqjiij2δðωþ Ei − EfÞ þ
z2J2

N2Γ2

X
f

����hfj
X
k;k0

γk0þk−qS
z
k0SkS−k0−kþqjii

����
2

δðωþ Ei − EfÞ

þ z2t2

N2Γ2

X
f

����hfj
X
k;k0

Szk0γ−k0þkþq
~d†k;σ ~d−k0þkþq;σjii

����
2

δðωþ Ei − EfÞ
�
; ðB1Þ

and for the π − π channel,

IUCLt−J
π−π ðq;ωÞ ¼ jWπ−πj2

�X
f

jhfj ~nqjiij2δðωþ Ei − EfÞ þ
z2J2

NΓ2

X
f

����hfj
X
k

γq−kSkS−kþqjii
����
2

δðωþ Ei − EfÞ

þ z2t2

NΓ2

X
f

����hfj
X
k

γqþk
~d†k;σ ~dqþk;σjii

����
2

δðωþ Ei − EfÞ
�
: ðB2Þ

JIA, WOHLFELD, WANG, MORITZ, and DEVEREAUX PHYS. REV. X 6, 021020 (2016)

021020-10



Here, J ¼ 4t2=U, and the spin operators are defined in a
standard way as

SkS−q−k ¼ 1

2N

X
q1;q2;σ

~d†q1;σ
~dq1þq;σ̄

~d†q2;σ̄
~dq2−q−k;σ

þ 1

4L

X
q1;q2

ð ~d†q1;↑ ~dq1þk;↑ − ~d†q1;↓
~dq1þk;↓Þ

× ð ~d†q2;↑
~dq2−q−k;↑ − ~d†q2;↓

~dq2−q−k;↓Þ: ðB3Þ

Note that all the operators ~di;σ and ~d†i;σ are defined in the
constrained Hilbert space without double occupancies.
These equations show that in the second order of the

UCL expansion, we obtain two sets of terms. The first
terms contain only the spin operators and correspond to the
“two-spin”

S2ðq;ωÞ ¼
z2J2

NΓ2

X
f

����hfj
X
k

γq−kSkSk−qjii
����
2

× δðωþ Ei − EfÞ; ðB4Þ

and “three-spin” Green’s functions

S3ðq;ωÞ ¼
z2J2

L2Γ2

X
f

����hfj
X
k;k0

γk0þk−qS
z
k0

× SkS−k0−kþqjii
����
2

δðωþ Ei − EfÞ: ðB5Þ

The second terms always involve charge excitations below
the gap. Since these terms do not contribute at half filling
(because of the constrained Hilbert space without double
occupancies), it is expected that at relatively low doping
levels, the first terms should be dominant (even though their
amplitude scales with J=Γ and not with t=Γ). Hence, we
compare the spectra of these first two terms, S2ðq;ωÞ and
S3ðq;ωÞ, in the second order of the UCL expansion with

the spectra of S0ðq;ωÞ and ~N0ðq;ωÞ (cf. Fig. 6) from the
Hubbard model. We see that at half filling, S0ðq;ωÞ can be
approximated relatively well by the three-spin excitations
probed by S3ðq;ωÞ and that ~N0ðq;ωÞ can be approximated
relatively well by the two-spin or bimagnon excitations
probed by S2ðq;ωÞ. Most of the discrepancies between
these two spectra can be found in the high-energy regime
and are therefore attributed to the failure of the t − J model
expansion at higher energies. The electron- and hole-doped
cases show much less pronounced agreement, where the

projected spin and charge excitations S0ðq;ωÞ and ~N0ðq;ωÞ
also probe the low-energy charge excitations below the
gap, which can give a relatively large contribution in the
spectrum.
The prediction that RIXS can probe the two-spin and

the three-spin excitations at half filling has already been

put forward in Refs. [34–37,54,55] in the case of the
Heisenberg model, consistent with our UCL expansions for
the Hubbard and t − J models. Note that usually the
Green’s functions containing the two-spin and the three-
spin operators are referred to as probing the “two-magnon”
and the “three-magnon” spectrum, though this terminology
may be used loosely in this context. Finally, the fact that
the charge dynamical structure factor for the half-filled
Hubbard model probes the two-magnon spectrum has also
been discussed in the context of nonresonant Raman
scattering (cf. Refs. [[23,56,57]]).

APPENDIX C: X-RAY ABSORPTION
SPECTROSCOPY

Although the intent of this manuscript is not to directly
compare the calculated spectra with the experimental
results, we show the calculated XAS for completeness.
In what follows, we also discuss the nonlocal character of
the wavefunction of the RIXS intermediate states by
comparing the XAS spectrum calculated on a single site

3

2
~

FIG. 6. Comparison between S0 and three-spin Green’s func-

tions S3 and between ~N0 and two-spin Green’s functions S2
calculated using exact diagonalization and following Eqs. (8) and
(11) from the main text of the paper and Eqs. (B4) and (B5). The
top (bottom) panels show spectra for the π − σ (π − π) polari-
zation setups (see main text of the paper for further details). Left,
middle, and right panels show RIXS spectra calculated for
n ¼ 0.83, n ¼ 1, and n ¼ 1.17 electron fillings, respectively.
The spectra are summed over all momenta along the nodal
direction and along the ky ¼ 0 direction that are accessible in
RIXS and on a 12-site cluster used in the exact diago-
nalization calculations and weighted with the RIXS form factors,

i.e., S0ðωÞ ¼ P
qjWπ−σ j2S0ðq;ωÞ, ~N0ðωÞ ¼ P

qjWπ−πj2 ~N0ðq;ωÞ,
S2ðωÞ¼

P
qjWπ−π j2S2ðq;ωÞ, and S3ðωÞ ¼

P
qjWπ−σ j2S3ðq;ωÞ.

The intensity scale is different on each panel (it is chosen in such
a way that each of the six spectra can be quite visible), and the
elastic response has been removed.
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with the XAS calculated on a 12-site cluster (i.e., the same
cluster as used for RIXS calculation) (see Fig. 7). It can be
easily verified that the single-site calculations yield a
substantially more distinct XAS spectrum than the cluster
calculations: The XAS spectrum not only consists of the
two main XAS peaks (four in the hole-doped case), which

are visible in both calculations and which correspond to the
L2 and the L3 edges, but it also consists of the much smaller
shoulder peaks, which are only visible in the cluster
calculations. These small shoulder peaks, which lie at
energy ca. 925 eV (945–946 eV) for the L3 (L2) edge
and remain there for all doping levels, correspond to the
XAS final state with the delocalized 3d�0 configuration,
and cannot be obtained in the single-site calculations. This
shows that the XAS final states have nonlocal character.
The above result has an important consequence for

RIXS: Since the XAS final states have nonlocal character,
it is expected that the intermediate states of RIXS cannot
be properly described in the single-site approximation.
Since the latter essentially corresponds to the fast
collision approximation, it is rather natural to expect that
such approximation may fail in describing the RIXS
cross section (which indeed occurs—see the main text of
the paper).
We note that there is also an additional peak in the hole-

doped XAS spectrum, visible both in the single-site and in
the cluster calculations at ca. 922 eV (942 eV) for the L3

(L2) edge. This peak corresponds to the XAS performed on
the hole-doped sites, i.e., to the transitions from the
2p03d�2 to the 2p13d�1 configuration: Since Uc < U in
our calculations, this transition costs less energy than the
“main” XAS transition, which corresponds to the transition
from the 2p03d�1 to the 2p13d�0 (923 eV at the L3 and
943 eV at the L2 edge). Because of the strongly nonlocal
character of the initial 2p03d�2 configuration, the XAS
performed on these “doubly occupied” sites has a larger
amplitude than the XAS transition performed on the singly
occupied sites. The latter is a peculiarity of the single-band
Hubbard model and will not be visible in the more
experimentally relevant charge transfer model or in the
experimental XAS spectra of the cuprates. Note, however,
that since in our calculations we tune to the resonance
corresponding to the 2p03d�1 → 2p13d�0 XAS transition,
the details of the 2p03d�2 to the 2p13d�1 XAS transition are
not that important (at least in the first approximation). Thus,
the partial disagreement between our calculated XAS and
the experimentally observed XAS on the cuprates does not
invalidate the application of the RIXS numerical results to
the understanding of the RIXS.

APPENDIX D: CORE-HOLE POTENTIAL
DEPENDENCE

In what follows, we show that the main conclusions of
the paper hold independently of the value of the core-hole
potential Uc—provided that this value is chosen within
some realistic range. Let us first state that the assumed
value of Uc ∼ 4t is a reasonable estimate and has been
utilized in the previous studies [24,58]. On the other hand,
another study assumed a much larger Uc ∼ 15t [59], and a
recent simulation of the RIXS experiment used Uc ¼ 6t

(b) 12-site cluster

(

(a) single-site

)
( 

   
   

   
   

)

FIG. 7. Comparison between the Cu L-edge XAS spectrum
calculated using exact diagonalization on a single site (top three
panels) and on a 12-site cluster with both hopping t and t0 taken
into account in the Hubbard model (bottom three panels) for hole-
doped, half-filling, and electron-doped cases (see text for more
details). In this paper, RIXS is always calculated for the
resonance corresponding to the XAS transition from the
2p03d�1 to the 2p13d�0 state and the L3 edge (923 eV peak
in the above spectra).
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[60] to fit with experiments. One should mention that
estimatingUc from the first-principles calculations is rather
difficult: The core-hole potential Uc is a monopole term; as
a result, the strong screening effect cannot be neglected,
and simply calculating the Coulomb interaction in the
Wannier basis (with the Wannier orbitals obtained from,
e.g., density functional theory calculations) usually fails to
provide a reasonable value of Uc [61]. Moreover, in the
single-band model, Uc cannot be directly connected with
Uc of the three-band model, as the effective orbital d in the
single-band model is the linear combination of the ligand
oxygen and not directly related to the Cu d orbital. In the
end, one can treat Uc as a free parameter and fit with
experiments (fitting with experiment is beyond the scope of
our study).
Altogether, the above analysis suggests that Uc ∼ 4 −

8t may be a good estimate for 3d transition metal oxides,
such as cuprates. While in the main text we calculated
the RIXS spectra for Uc ¼ 4t, here we investigate how
the RIXS spectra change when a larger (but still realistic)
Uc ¼ 8t. The calculated RIXS spectra using the exact
diagonalization method for the Hubbard model at half
filling (for details, see main text of the paper) are shown
in Fig. 8 (for didactic reasons, spectra for a rather
unrealistic value of Uc ¼ 2t are also presented). Note
that since the RIXS spectra are plotted using the same

scale as in those presented in the main text, one can
easily compare the spectra for different Uc. We see that
increasing Uc indeed changes the total spectral weight
carried by the magnetic peak in the cross-polarized
channel and leads to a transfer of spectral weight between
the peaks detected in the parallel-polarized channel. A
more detailed investigation shows that RIXS spectra for
Uc ¼ 8t are in better agreement with the approximate
spectra obtained in the UCL approximation presented in
the main text. Nevertheless, even in this case, this
agreement between the approximate RIXS spectra and
the exact RIXS spectra is not perfect: This mismatch is
especially noticeable for the parallel-polarized case but
also visible in the cross-polarized case. Finally, note also
that the above comparison only takes into account the
half-filled case, i.e., the case when the approximate and
the exact RIXS spectra have the best agreement based on
the Uc ¼ 4t results.
Intuitively, the fact that the agreement between approxi-

mate and exact RIXS becomes better when Uc increases
can be attributed to the decreasing 2p13d�1 feature in the
RIXS intermediate state: The larger the probability of
having solely sites with the 2p13d�0 configuration, the
closer one is to the “single-ion” approximation—for which
the approximate RIXS cross section becomes exact.

APPENDIX E: VISUALIZATION OF THE
FINAL-STATE CONFIGURATIONS

Figure 9 shows the dominant Cu L-edge RIXS process in
the cross-polarized channel in hole language. The hole in
the 3d� orbital on a particular site j in the initial state of
RIXS is transferred via the dipole operator D into the 2p
orbital on the same site jwith a nonuniquely defined spin in
the intermediate state of RIXS due to spin-orbit coupling in
the core. This is transferred back via the dipole operatorD†

to the d orbital on the same site jwith a spin flip in the final
state compared to the initial state of the RIXS process.
While we demonstrate this process on a single site j in real
space, in reality a coherent superposition of such excita-
tions is created with phase factors eıqj; this leads to a well-
defined, single spin flip with momentum q in the final state
of RIXS—i.e., RIXS is sensitive to the spin dynamical
structure factor Sðq;ωÞ.
Figure 10 shows the dominant Cu L-edge RIXS process

in the parallel-polarized channel in hole language. The hole
in the 3d� orbital on a particular site j in the initial state of
RIXS is transferred via the dipole operator D into the 2p
orbital on the same site j with a well-defined spin in the
intermediate state. In the intermediate state, a “shakeup”
happens, which creates a two-spin and/ or charge excitation
in the final state. While this process is shown on a single
site j (and its neighbors) in real space, in reality a coherent
superposition of such excitations is created with a phase
factor eıqj; leading to a two-spin or charge excitation

FIG. 8. Exact RIXS cross section calculated using exact
diagonalization for n ¼ 1 (half filling) and for three different
values of the core-hole potential: Uc ¼ 2t, 4t, and 8t [the model,
its parameters (except for Uc), and the exact diagonalization
method are the same as in the main text]. The left (right) panels
show the RIXS spectra for the π − σ (π − π) relative polarization.
The top, middle, and bottom panels show spectra calculated at
q ¼ ðπ=2; π=2Þ, q ¼ ð2π=3; 0Þ, and integrated over all momenta
along the nodal direction and along the qy ¼ 0 direction
accessible on a 12-site cluster (“q integrated”). Elastic response
is excluded, and each RIXS spectrum is calculated at the incident
energy corresponding to the main (“L3”) XAS peak at half filling.

USING RIXS TO UNCOVER ELEMENTARY CHARGE AND … PHYS. REV. X 6, 021020 (2016)

021020-13



created with momentum q in the final state; i.e., RIXS has
some sensitivity to ~N0ðq;ωÞ, which unfortunately has no
simple analog in the standard two-particle charge response
function.

[1] L. J. P. Ament, M. van Veenendaal, T. P. Devereaux, J. P.
Hill, and J. van den Brink, Resonant Inelastic X-Ray
Scattering Studies of Elementary Excitations, Rev. Mod.
Phys. 83, 705 (2011).

[2] A. Kotani and S. Shin, Resonant Inelastic X-ray Scattering
Spectra for Electrons in Solids, Rev. Mod. Phys. 73, 203
(2001).

[3] J. Schlappa, T. Schmitt, F. Vernay, V. N. Strocov, V.
Ilakovac, B. Thielemann, H. M. Rønnow, S. Vanishri, A.
Piazzalunga, X. Wang, L. Braicovich, G. Ghiringhelli, C.
Marin, J. Mesot, B. Delley, and L. Patthey, Collective
Magnetic Excitations in the Spin Ladder Sr14Cu24O41

Measured Using High-Resolution Resonant Inelastic X-
Ray Scattering, Phys. Rev. Lett. 103, 047401 (2009).

[4] L. Braicovich, L. J. P. Ament, V. Bisogni, F. Forte,
C. Aruta, G. Balestrino, N. B. Brookes, G. M. De Luca,
P. G. Medaglia, F. Miletto Granozio et al., Dispersion of

Magnetic Excitations in the Cuprate La2CuO4 and CaCuO2

Compounds Measured Using Resonant X-Ray Scattering,
Phys. Rev. Lett. 102, 167401 (2009).

[5] M.Guarise, B.Dalla Piazza,M.Moretti Sala, G.Ghiringhelli,
L. Braicovich, H. Berger, J. N. Hancock, D. van der Marel,
T. Schmitt, V. N. Strocov et al., Measurement of Magnetic
Excitations in the Two-Dimensional Antiferromagnetic
Sr2CuO2Cl2 Insulator Using Resonant X-Ray Scattering:
Evidence for Extended Interactions, Phys. Rev. Lett. 105,
157006 (2010).

[6] L. Braicovich, J. van den Brink, V. Bisogni, M. Moretti Sala,
L. J. P. Ament, N. B. Brookes, G. M. De Luca, M. Salluzzo,
T. Schmitt, V. N. Strocov, and G. Ghiringhelli, Magnetic
Excitations and Phase Separation in the Underdoped
La2−xSrxCuO4 Superconductor Measured by Resonant
Inelastic X-Ray Scattering, Phys. Rev. Lett. 104, 077002
(2010).

[7] J. Schlappa, K. Wohlfeld, K. J. Zhou, M. Mourigal,
M.W. Haverkort, V. N. Strocov, L. Hozoi, C. Monney, S.
Nishimoto, S. Singh et al., Spin-Orbital Separation in the
Quasi-One-Dimensional Mott Insulator Sr2CuO3, Nature
(London) 485, 82 (2012).

[8] M. Le Tacon, G. Ghiringhelli, J. Chaloupka, M. Moretti
Sala, V. Hinkov, M.W. Haverkort, M. Minola, M. Bakr,
K. J. Zhou, S. Blanco-Canosa et al., Intense Paramagnon

incoming photon outgoing photon

initial state intermediate state nal state

D D+
3d 1

2p0

3d 0

2p1 2p0+

3d 1* * *

FIG. 9. A cartoon picture of the dominant Cu L-edge RIXS process in the cross-polarized “channel.”

incoming photon
outgoing photon

initial state intermediate state

nal state: two spin

D

D+

3d 1

2p0

3d 0

2p1

nal state: charge

03d

2p0

D+

3d 1

2p0

* *

*

*

FIG. 10. A cartoon picture of the dominant Cu L-edge RIXS process in the parallel-polarized channel.

JIA, WOHLFELD, WANG, MORITZ, and DEVEREAUX PHYS. REV. X 6, 021020 (2016)

021020-14

http://dx.doi.org/10.1103/RevModPhys.83.705
http://dx.doi.org/10.1103/RevModPhys.83.705
http://dx.doi.org/10.1103/RevModPhys.73.203
http://dx.doi.org/10.1103/RevModPhys.73.203
http://dx.doi.org/10.1103/PhysRevLett.103.047401
http://dx.doi.org/10.1103/PhysRevLett.102.167401
http://dx.doi.org/10.1103/PhysRevLett.105.157006
http://dx.doi.org/10.1103/PhysRevLett.105.157006
http://dx.doi.org/10.1103/PhysRevLett.104.077002
http://dx.doi.org/10.1103/PhysRevLett.104.077002
http://dx.doi.org/10.1038/nature10974
http://dx.doi.org/10.1038/nature10974


Excitations in a Large Family of High-Temperature
Superconductors, Nat. Phys. 7, 725 (2011).

[9] M. P. M. Dean, A. J. A. James, R. S. Springell, X. Liu, C.
Monney, K. J. Zhou, R. M. Konik, J. S. Wen, Z. J. Xu, G. D.
Gu et al., High-Energy Magnetic Excitations in the Cuprate
Superconductor Bi2Sr2CaCu2O8þδ: Towards a Unified
Description of Its Electronic and Magnetic Degrees of
Freedom, Phys. Rev. Lett. 110, 147001 (2013).

[10] M. P. M. Dean, G. Dellea, R. S. Springell, F. Yakhou-Harris,
K. Kummer, N. B. Brookes, X. Liu, Y.-J. Sun, J. Strle, T.
Schmitt et al., Persistence of Magnetic Excitations in
La2−xSrxCuO4 from the Undoped Insulator to the Heavily
Overdoped Non-superconducting Metal, Nat. Mater. 12,
1019 (2013).

[11] M. P. M. Dean, G. Dellea, M. Minola, S. B. Wilkins,
R. M. Konik, G. D. Gu, M. Le Tacon, N. B. Brookes, F.
Yakhou-Harris, K. Kummer et al., Magnetic Excitations in
Stripe-Ordered La1.875Ba0.125CuO4 Studied Using Resonant
Inelastic X-ray Scattering, Phys. Rev. B 88, 020403 (2013).

[12] M. Le Tacon, M. Minola, D. C. Peets, M. Moretti Sala, S.
Blanco-Canosa, V. Hinkov, R. Liang, D. A. Bonn, W. N.
Hardy, C. T. Lin et al.,Dispersive Spin Excitations in Highly
Overdoped Cuprates Revealed by Resonant Inelastic X-Ray
Scattering, Phys. Rev. B 88, 020501 (2013).

[13] K. Ishii, M. Fujita, T. Sasaki, M. Minola, G. Dellea, C.
Mazzoli, K. Kummer, G. Ghiringhelli, L. Braicovich, T.
Tohyama et al., High-Energy Spin and Charge Excitations
in Electron-Doped Copper Oxide Superconductors, Nat.
Commun. 5, 3714 (2014).

[14] W. S. Lee, J. J. Lee, E. A. Nowadnick, W. Tabis, S. W.
Huang, V. N. Strocov, E. M. Motoyama, G. Yu, B. Moritz,
M. Greven et al., Asymmetry of Collective Excitations in
Electron and Hole Doped Cuprate Superconductors, Nat.
Phys. 10, 883 (2014).

[15] M. P. M. Dean, A. J. A. James, A. C. Walters, V. Bisogni, I.
Jarrige, M. Hücker, E. Giannini, M. Fujita, J. Pelliciari, Y. B.
Huang et al., Itinerant Effects and Enhanced Magnetic
Interactions in Bi-based Multilayer Cuprates, Phys. Rev. B
90, 220506 (2014).

[16] M. Guarise, B. D. Piazza, H. Berger, E. Giannini, T.
Schmitt, H. M. Rønnow, G. A. Sawatzky, J. van den Brink,
D. Altenfeld, I. Eremin, and M. Grioni, Anisotropic Soft-
ening of Magnetic Excitations Along the Nodal Direction in
Superconducting Cuprates, Nat. Commun. 5, 5760 (2014).

[17] M. Minola, G. Dellea, H. Gretarsson, Y. Y. Peng, Y. Lu, J.
Porras, T. Loew, F. Yakhou, N. B. Brookes, Y. B. Huang
et al., Collective Nature of Spin Excitations in Super-
conducting Cuprates Probed by Resonant Inelastic X-Ray
Scattering, Phys. Rev. Lett. 114, 217003 (2015).

[18] S. Wakimoto, K. Ishii, H. Kimura, M. Fujita, G. Dellea, K.
Kummer, L. Braicovich, G. Ghiringhelli, L. M. Debeer-
Schmitt, and G. E. Granroth, High-Energy Magnetic Ex-
citations in Overdoped La2−xSrxCuO4 Studied by Neutron
and Resonant Inelastic X-Ray Scattering, Phys. Rev. B 91,
184513 (2015).

[19] P. Glatzel, U. Bergmann, J. Yano, H. Visser, J. H. Robblee,
W. Gu, F. M. F. de Groot, G. Christou, V. L. Pecoraro, S. P.
Cramer, and V. K. Yachandra, The Electronic Structure of
Mn in Oxides, Coordination Complexes, and the Oxygen-
Evolving Complex of Photosystem II Studied by Resonant

Inelastic X-Ray Scattering, J. Am. Chem. Soc. 126, 9946
(2004).

[20] S. G. Chiuzbăian, G. Ghiringhelli, C. Dallera, M. Grioni, P.
Amann, X. Wang, L. Braicovich, and L. Patthey, Localized
Electronic Excitations in NiO Studied with Resonant
Inelastic X-Ray Scattering at the NiM Threshold: Evidence
of Spin Flip, Phys. Rev. Lett. 95, 197402 (2005).

[21] L. Braicovich, G. Ghiringhelli, L. H. Tjeng, V. Bisogni, C.
Dallera, A. Piazzalunga, W. Reichelt, and N. B. Brookes,
Neutral 3d Excitations in Insulating VO2 as Seen with
Resonant Inelastic X-Ray Scattering at the V L3;2-Edges,
Phys. Rev. B 76, 125105 (2007).

[22] D. J. Scalapino, A Common Thread: The Pairing Interaction
for Unconventional Superconductors, Rev. Mod. Phys. 84,
1383 (2012).

[23] T. P. Devereaux and R. Hackl, Inelastic Light Scattering
from Correlated Electrons, Rev. Mod. Phys. 79, 175 (2007).

[24] C. J. Jia, E. A. Nowadnick, K. Wohlfeld, Y. F. Kung, C.-C.
Chen, S. Johnston, T. Tohyama, B. Moritz, and T. P.
Devereaux, Persistent Spin Excitations in Doped Antifer-
romagnets Revealed by Resonant Inelastic Light Scattering,
Nat. Commun. 5, 3314 (2014).

[25] C. J. Jia, C.-C. Chen, A. P. Sorini, B. Moritz, and T. P.
Devereaux, Uncovering Selective Excitations Using the
Resonant Profile of Indirect Inelastic X-Ray Scattering in
Correlated Materials: Observing Two-Magnon Scattering
and Relation to the Dynamical Structure Factor, New J.
Phys. 14, 113038 (2012).

[26] Y. Wang, C. J. Jia, B. Moritz, and T. P. Devereaux, Real-
Space Visualization of Remnant Mott Gap and Magnon
Excitations, Phys. Rev. Lett. 112, 156402 (2014).

[27] L. J. P. Ament, G. Ghiringhelli, M. Moretti Sala, L. Brai-
covich, and J. van den Brink, Theoretical Demonstration of
How the Dispersion of Magnetic Excitations in Cuprate
Compounds Can Be Determined Using Resonant Inelastic
X-Ray Scattering, Phys. Rev. Lett. 103, 117003 (2009).

[28] Jin Luo, G. T. Trammell, and J. P. Hannon, Scattering
Operator for Elastic and Resonant Inelastic X-Ray Scatter-
ing, Phys. Rev. Lett. 71, 287 (1993).

[29] F. M. F. de Groot, P. Kuiper, and G. A. Sawatzky, Local
Spin-Flip Spectral Distribution Obtained by Resonant
X-Ray Raman Scattering, Phys. Rev. B 57, 14584
(1998).

[30] M. van Veenendaal, Polarization Dependence of L- and
M-Edge Resonant Inelastic X-Ray Scattering in Transition-
Metal Compounds, Phys. Rev. Lett. 96, 117404 (2006).

[31] M.W. Haverkort, Theory of Resonant Inelastic X-Ray
Scattering by Collective Magnetic Excitations, Phys. Rev.
Lett. 105, 167404 (2010).

[32] P. Marra, K. Wohlfeld, and J. van den Brink, Unraveling
Orbital Correlations with Magnetic Resonant Inelastic
X-Ray Scattering, Phys. Rev. Lett. 109, 117401 (2012).

[33] L. J. P. Ament, F. Forte, and J. van den Brink, Ultrashort
Lifetime Expansion for Indirect Resonant Inelastic X-Ray
Scattering, Phys. Rev. B 75, 115118 (2007).

[34] V. Bisogni, L. Simonelli, L. J. P. Ament, F. Forte, M.
Moretti Sala, M. Minola, S. Huotari, J. van den Brink,
G. Ghiringhelli, N. B. Brookes, and L. Braicovich, Bimag-
non Studies in Cuprates with Resonant Inelastic X-Ray
Scattering at the O K-Edge. I. Assessment on La2CuO4 and

USING RIXS TO UNCOVER ELEMENTARY CHARGE AND … PHYS. REV. X 6, 021020 (2016)

021020-15

http://dx.doi.org/10.1038/nphys2041
http://dx.doi.org/10.1103/PhysRevLett.110.147001
http://dx.doi.org/10.1038/nmat3723
http://dx.doi.org/10.1038/nmat3723
http://dx.doi.org/10.1103/PhysRevB.88.020403
http://dx.doi.org/10.1103/PhysRevB.88.020501
http://dx.doi.org/10.1038/ncomms4714
http://dx.doi.org/10.1038/ncomms4714
http://dx.doi.org/10.1038/nphys3117
http://dx.doi.org/10.1038/nphys3117
http://dx.doi.org/10.1103/PhysRevB.90.220506
http://dx.doi.org/10.1103/PhysRevB.90.220506
http://dx.doi.org/10.1038/ncomms6760
http://dx.doi.org/10.1103/PhysRevLett.114.217003
http://dx.doi.org/10.1103/PhysRevB.91.184513
http://dx.doi.org/10.1103/PhysRevB.91.184513
http://dx.doi.org/10.1021/ja038579z
http://dx.doi.org/10.1021/ja038579z
http://dx.doi.org/10.1103/PhysRevLett.95.197402
http://dx.doi.org/10.1103/PhysRevB.76.125105
http://dx.doi.org/10.1103/RevModPhys.84.1383
http://dx.doi.org/10.1103/RevModPhys.84.1383
http://dx.doi.org/10.1103/RevModPhys.79.175
http://dx.doi.org/10.1038/ncomms4314
http://dx.doi.org/10.1088/1367-2630/14/11/113038
http://dx.doi.org/10.1088/1367-2630/14/11/113038
http://dx.doi.org/10.1103/PhysRevLett.112.156402
http://dx.doi.org/10.1103/PhysRevLett.103.117003
http://dx.doi.org/10.1103/PhysRevLett.71.287
http://dx.doi.org/10.1103/PhysRevB.57.14584
http://dx.doi.org/10.1103/PhysRevB.57.14584
http://dx.doi.org/10.1103/PhysRevLett.96.117404
http://dx.doi.org/10.1103/PhysRevLett.105.167404
http://dx.doi.org/10.1103/PhysRevLett.105.167404
http://dx.doi.org/10.1103/PhysRevLett.109.117401
http://dx.doi.org/10.1103/PhysRevB.75.115118


Comparison with the Excitation at Cu L3 and Cu K-Edges,
Phys. Rev. B 85, 214527 (2012).

[35] V. Bisogni, M. Moretti Sala, A. Bendounan, N. B. Brookes,
G. Ghiringhelli, and L. Braicovich, Bimagnon Studies in
Cup Rates with Resonant Inelastic X-Ray Scattering at the
O K-Edge. II. Doping Effect in La2−xSrxCuO4, Phys. Rev.
B 85, 214528 (2012).

[36] Jun-I. Igarashi and T. Nagao, Magnetic Excitations in
L-Edge Resonant Inelastic X-Ray Scattering from Cuprate
Compounds, Phys. Rev. B 85, 064421 (2012).

[37] L. J. P. Ament and J. van den Brink, Strong Three-Magnon
Scattering in Cuprates by Resonant X-Rays, arXiv:
1002.3773.

[38] D. Benjamin, I. Klich, and E. Demler, Single-Band Model of
Resonant Inelastic X-Ray Scattering by Quasiparticles in
High-Tc Cuprate Superconductors, Phys. Rev. Lett. 112,
247002 (2014).

[39] F. C. Zhang and T. M. Rice, Effective Hamiltonian for the
Superconducting Cu Oxides, Phys. Rev. B 37, 3759 (1988).

[40] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK
Users Guide: Solution of Large-Scale Eigenvalue Problems
with Implicitly Restarted Arnoldi Methods (SIAM,
Philadelphia, 1998).

[41] H. A. Van der Vorst, Bi-CGSTAB: A Fast and Smoothly
Converging Variant of Bi-CG for the Solution of Non-
symmetric Linear Systems, SIAM J. Sci. Stat. Comput. 13,
631 (1992).

[42] E. Dagotto, Correlated Electrons in High-Temperature
Superconductors, Rev. Mod. Phys. 66, 763 (1994).

[43] K. Wohlfeld, S. Nishimoto, M.W. Haverkort, and J. van den
Brink, Microscopic Origin of Spin-Orbital Separation in
Sr2CuO3, Phys. Rev. B 88, 195138 (2013).

[44] At this resonance, the intermediate state is an element of a
subspace with no 3d� hole on the core-hole site.

[45] W. L. Yang, A. P. Sorini, C.-C. Chen, B. Moritz, W.-S. Lee,
F. Vernay, P. Olalde-Velasco, J. D. Denlinger, B. Delley,
J.-H. Chu et al., Evidence for Weak Electronic Correlations
in Iron Pnictides, Phys. Rev. B 80, 014508 (2009).

[46] K.-J. Zhou, Y.-B. Huang, C. Monney, X. Dai, V. N. Strocov,
N.-L. Wang, Z.-G. Chen, C. Zhang, P. Dai, L. Patthey, J. van
den Brink, H. Ding, and T. Schmitt, Persistent High-Energy
Spin Excitations in Iron-pnictide Superconductors, Nat.
Commun. 4, 1470 (2013).

[47] L. A. Wray, J. Denlinger, S.-W. Huang, H. He, N. P. Butch,
M. Brian Maple, Z. Hussain, and Y.-D. Chuang, Spectro-
scopic Determination of the Atomic f-Electron Symmetry
Underlying Hidden Order in URu2Si2, Phys. Rev. Lett. 114,
236401 (2015).

[48] S. Moser, S. Fatale, P. Krüger, H. Berger, P. Bugnon, A.
Magrez, H. Niwa, J. Miyawaki, Y. Harada, and M. Grioni,
Electron-Phonon Coupling in the Bulk of Anatase TiO2

Measured by Resonant Inelastic X-Ray Spectroscopy, Phys.
Rev. Lett. 115, 096404 (2015).

[49] M. Moretti Sala, V. Schnells, S. Boseggia, L. Simonelli,
A. Al-Zein, J. G. Vale, L. Paolasini, E. C. Hunter,
R. S. Perry, D. Prabhakaran et al., Evidence of Quantum
Dimer Excitations in Sr3Ir2O7, Phys. Rev. B 92, 024405
(2015).

[50] E. Benckiser, L. Fels, G. Ghiringhelli, M. Moretti Sala, T.
Schmitt, J. Schlappa, V. N. Strocov, N. Mufti, G. R. Blake,
A. A. Nugroho et al., Orbital Superexchange and Crystal
Field Simultaneously at Play in YVO3: Resonant Inelastic
X-Ray Scattering at the V L-Edge and the O K-Edge, Phys.
Rev. B 88, 205115 (2013).

[51] Ph. Wernet, K. Kunnus, I. Josefsson, I. Rajkovic, W.
Quevedo, M. Beye, S. Schreck, S. Grübel, M. Scholz, D.
Nordlund et al., Orbital-Specific Mapping of the Ligand
Exchange Dynamics of FeðCOÞ5 in Solution, Nature
(London) 520, 78 (2015).

[52] J. van den Brink and M. van Veenendaal, Correlation
Functions Measured by Indirect Resonant Inelastic X-Ray
Scattering, Europhys. Lett. 73, 121 (2006).

[53] F. Forte, L. J. P. Ament, and J. van den Brink, Magnetic
Excitations in La2CuO4 Probed by Indirect Resonant
Inelastic X-Ray Scattering, Phys. Rev. B 77, 134428
(2008).

[54] S. Kourtis, J. van den Brink, and M. Daghofer, Exact
Diagonalization Results for Resonant Inelastic X-Ray Scat-
tering Spectra of One-Dimensional Mott Insulators, Phys.
Rev. B 85, 064423 (2012).

[55] J.-I. Igarashi and T. Nagao,Magnetic Excitations in L-Edge
Resonant Inelastic X-Ray Scattering from One-Dimensional
Cuprates, Phys. Rev. B 85, 064422 (2012).

[56] D. K. Morr, A. V. Chubukov, A. P. Kampf, and G. Blumberg,
Raman Scattering in a Two-layer Antiferromagnet, Phys.
Rev. B 54, 3468 (1996).

[57] N. Lin, E. Gull, and A. J. Millis, Two-Particle Response in
Cluster Dynamical Mean-Field Theory: Formalism and
Application to the Raman Response of High-Temperature
Superconductors, Phys. Rev. Lett. 109, 106401 (2012).

[58] K. Tsutsui, H. Kondo, T. Tohyama, and S. Maekawa,
Resonant Inelastic X-Ray Scattering Spectrum in High-Tc
Cuprates, Phys. B Cond. Mat. 284–288, 457 (2000).

[59] T. Tohyama, K. Tsutsui, M. Mori, S. Sota, and S. Yunoki,
Enhanced Charge Excitations in Electron-Doped Cuprates
by Resonant Inelastic X-Ray Scattering, Phys. Rev. B 92,
014515 (2015).

[60] H. Y. Huang, C. J. Jia, Z. Y. Chen, K. Wohlfeld, B. Moritz,
T. P. Devereaux, W. B. Wu, J. Okamoto, W. S. Lee,
M. Hashimoto et al., Raman and Fluorescence
Characteristics of Resonant Inelastic X-ray Scattering from
Doped Superconducting Cuprates, Sci. Rep. 6, 19657
(2015).

[61] M.W. Haverkort, M. Zwierzycki, and O. K. Andersen,
Multiplet Ligand-Field Theory Using Wannier Orbitals,
Phys. Rev. B 85, 165113 (2012).

JIA, WOHLFELD, WANG, MORITZ, and DEVEREAUX PHYS. REV. X 6, 021020 (2016)

021020-16

http://dx.doi.org/10.1103/PhysRevB.85.214527
http://dx.doi.org/10.1103/PhysRevB.85.214528
http://dx.doi.org/10.1103/PhysRevB.85.214528
http://dx.doi.org/10.1103/PhysRevB.85.064421
http://arXiv.org/abs/1002.3773
http://arXiv.org/abs/1002.3773
http://dx.doi.org/10.1103/PhysRevLett.112.247002
http://dx.doi.org/10.1103/PhysRevLett.112.247002
http://dx.doi.org/10.1103/PhysRevB.37.3759
http://dx.doi.org/10.1137/0913035
http://dx.doi.org/10.1137/0913035
http://dx.doi.org/10.1103/RevModPhys.66.763
http://dx.doi.org/10.1103/PhysRevB.88.195138
http://dx.doi.org/10.1103/PhysRevB.80.014508
http://dx.doi.org/10.1038/ncomms2428
http://dx.doi.org/10.1038/ncomms2428
http://dx.doi.org/10.1103/PhysRevLett.114.236401
http://dx.doi.org/10.1103/PhysRevLett.114.236401
http://dx.doi.org/10.1103/PhysRevLett.115.096404
http://dx.doi.org/10.1103/PhysRevLett.115.096404
http://dx.doi.org/10.1103/PhysRevB.92.024405
http://dx.doi.org/10.1103/PhysRevB.92.024405
http://dx.doi.org/10.1103/PhysRevB.88.205115
http://dx.doi.org/10.1103/PhysRevB.88.205115
http://dx.doi.org/10.1038/nature14296
http://dx.doi.org/10.1038/nature14296
http://dx.doi.org/10.1209/epl/i2005-10366-9
http://dx.doi.org/10.1103/PhysRevB.77.134428
http://dx.doi.org/10.1103/PhysRevB.77.134428
http://dx.doi.org/10.1103/PhysRevB.85.064423
http://dx.doi.org/10.1103/PhysRevB.85.064423
http://dx.doi.org/10.1103/PhysRevB.85.064422
http://dx.doi.org/10.1103/PhysRevB.54.3468
http://dx.doi.org/10.1103/PhysRevB.54.3468
http://dx.doi.org/10.1103/PhysRevLett.109.106401
http://dx.doi.org/10.1016/S0921-4526(99)02025-6
http://dx.doi.org/10.1103/PhysRevB.92.014515
http://dx.doi.org/10.1103/PhysRevB.92.014515
http://dx.doi.org/10.1038/srep19657
http://dx.doi.org/10.1038/srep19657
http://dx.doi.org/10.1103/PhysRevB.85.165113

