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Competition between ordered phases, and their associated phase transitions, are significant in the
study of strongly correlated systems. Here, we examine one aspect, the nonequilibrium dynamics of a
photoexcited Mott-Peierls system, using an effective Peierls-Hubbard model and exact diagonalization.
Near a transition where spin and charge become strongly intertwined, we observe antiphase dynamics and a
coupling-strength-dependent suppression or enhancement in the static structure factors. The renormalized
bosonic excitations coupled to a particular photoexcited electron can be extracted, which provides an
approach for characterizing the underlying bosonic modes. The results from this analysis for different
electronic momenta show an uneven softening due to a stronger coupling near kF. This behavior reflects
the strong link between the fermionic momenta, the coupling vertices, and ultimately, the bosonic
susceptibilities when multiple phases compete for the ground state of the system.
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Emergent phenomena in strongly correlated materials
arise from the interplay between degrees of freedom,
resulting in a delicate balance of electron, spin, lattice,
and orbital interactions. This is most clearly displayed in
the relationship between excitations around competing
ground states. For example, in high-temperature super-
conductors such as the cuprates [1–4] and iron pnictides
[5–9], antiferroromagnetic (AFM), charge-density-wave
(CDW), and nematic order are believed to be the key
competitors of superconductivity (SC) [10–13]. New
bosonic excitations induced by quantum fluctuations in
the vicinity of quantum phase transitions (QPTs) could
potentially mediate SC [14–16]. In correlated materials
displaying both AFM and CDW orders, the spin and
charge excitations are intimately linked and may behave
quite differently when either order is dominant. This
interplay is expected to become profound near a QPT
where neither order is dominant, i.e., in the crossover
between two phases, and they compete for the underlying
ground state [17–21].
Despite the importance of this emergent behavior,

surprisingly, little is known about the evolution of excita-
tions in such systems. Nonequilibrium studies provide the
ability to separate and track various competing orders and
offers an effective approach for characterizing and analyz-
ing their dynamics [22–33]. As a powerful and widely used
tool, an ultrafast pump allows for the photomanipulation of
the delicate balance between different competing orders
[34–42]. To understand how electrons dressed by bosonic
excitations form quasiparticles in systems with intertwined

orders, angle-resolvedphotoemissionspectroscopy(ARPES)
in the time-domain can give quantitative insight into the
integrity of the quasiparticle as well as its renormalized
dispersion [43–45]. However, one must still infer which
bosonic excitations give rise to renormalization, embodied
solely in the single-particle self-energy. In contrast, those
bosonic excitations are directly visible via inelastic x-ray
[1–3], neutron [46,47], and Raman scattering [48,49] as
well as other opticalmethods [50,51], yet difficult to correlate
back with the properties of the renormalized electron mea-
sured via ARPES.
To link the two descriptions and monitor nonequilibrium

dynamics from the perspective of both the electronic
and bosonic degrees of freedom, in this Letter, we simulate
the nonequilibrium dynamics of a Peierls insulator upon
instantaneous photoexcitation. Whereas ARPES provides
the spectral function, which has been well characterized in
previous studies [43,44], we, instead, correlate the spectra
with a detailed measurement of the charge and spin bosonic
excitations coupled to the excited electron, unveiling the
link between the fermionic and bosonic renormalizations in
a system having intertwined spin and charge orders.
Utilizing an effective model that captures CDW-AFM

competition, we first create a momentum-resolved photo-
hole resulting from photoexcitation of an electron and,
then, directly calculate the charge and spin excitations of
the remnant system [see Fig. 1(a)]. By comparing the
dynamics across parameter space, we find that the fre-
quency associated with the charge and spin responses
reflects the bosonic excitations associated with the
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photoexcited electron. This link between bosonic excita-
tions and the fermionic momentum of the photoexcited
electron is reflected in the uneven softening of modes
approaching the phase boundary.
The physics of the Mott-Peierls system can be captured

in the Hubbard-Holstein model (HHM) [52,53], which
has been well studied in equilibrium: the presence of both
electron-electron (e-e) and electron-phonon (e-ph) effects
leads to CDW-AFM competition and a metallic region
between the ordered phases [54–60]. In this model, π
momentum dominates the underlying order for both spin
and charge; therefore, we introduce the Peierls-Hubbard
model (PHM), which simplifies the lattice degrees of
freedom to a uniform dimerization HPHM ¼ He-e þHe−ph

He-e ¼ −th
X

i;σ

ðc†iσciþ1;σ þ H:c:Þ þU
X

i

ni↑ni↓;

He-ph ¼ −
gffiffiffiffi
N

p ðb† þ bÞ
X

i;σ

ð−1Þiniσ þ Ωb†b; ð1Þ

where th is the nearest-neighbor hopping integral, c†iσ (ciσ)
and niσ are the electron creation (annihilation) and number
operator at site i of spin σ, U is the on-site Coulomb
repulsion, and b†, (b), and Ω are the phonon creation
(annihilation), operator, and frequency, respectively. The
dimensionless e-e and e-ph coupling strengths are defined

as u ¼ U=th and λ ¼ g2=thΩ, respectively. The phonon
frequency is set to Ω ¼ th as in Ref. [54]. The calculations
are performed on one-dimensional chains of N ¼ 10 sites
with periodic boundary conditions and maximum phonon
occupation M ¼ 127. We use the parallel Arnoldi method
[61] to determine the ground state wave function and the
Krylov subspace technique [62–67] to evaluate the evolu-
tion of a state jψðtþ δtÞi ¼ e−iHδtjψðtÞi.
Based on this PHM Hamiltonian, Figs. 1(b) and 1(c)

show the phonon occupation and local moment at half
filling as functions of u and λ in equilibrium obtained from
our exact diagonalization calculation. The dashed line
indicates the phase boundary in the antiadiabatic limit
where ueff ¼ 0, while the solid line tracks the numerical
boundary where the translational symmetry breaks and the
ground state changes from a doubly degenerate (Peierls
phase) to nondegenerate. This boundary approaches the
antiadiabatic line asymptotically in the strong-coupling
limit, while the metallic phase broadens as electron
itinerancy dominates in the intermediate and weak-
coupling regime. This equilibrium phase diagram is con-
sistent with results from the HHM [54–60], demonstrating
the effectiveness of our model in capturing competing
CDW-AFM orders (see the Supplemental Material [67]
for detailed discussions).
Aided by the phase diagram in Fig. 1(b), we study the

dynamics upon photoexcitation of an electron jψð0þÞi ¼
ckσjGi from theground state jGi in thePeierls phaseFirst,we
concentrate on zero momenta where ckσ ¼ ð1= ffiffiffiffi

N
p ÞPjσcjσ

[Fig. 1(a)]. Instead of focusing on the photoexcited
electron with links to ARPES, we analyze the temporal
dynamics of charge and spin in the remnant system by

evaluating the instantaneous structure factors Nðq; tÞ ¼
hψðtÞjρðcÞ−qρ

ðcÞ
q jψðtÞi andSðq;tÞ¼hψðtÞjρðsÞ−qρ

ðsÞ
q jψðtÞi, where

ρðc=sÞq ¼ P
kðc†kþq↑ck↑ � c†kþq↓ck↓Þ. These nonequilibrium

structure factors after photoexcitation do not reflect the
equilibrium properties of simply photodoping, but reveal
the information about competing order and the underlying
bosonic excitations.
To provide a global perspective on the dynamics in terms

of time and momentum, we first focus on a strong-coupling
set of parameters near the phase boundary [u ¼ 7.8, λ ¼ 4,
indicated by the blue triangle in Figs. 1(b) and 1(c)]. Before
photoexcitation, the charge correlation peaks sharply at
q ¼ π due to the CDWorder, while spin is weak and broad
[67]. Although different in equilibrium, their dynamics
are tightly related. Figure 2(a) shows the evolution of the
charge [ΔNðq; tÞ ¼ Nðq; tÞ − Nðq; 0þÞ] and spin structure
factors [ΔSðq; tÞ ¼ Sðq; tÞ − Sðq; 0þÞ] after photoexcita-
tion. Their momentum distribution (especially for charge)
indicates that the dynamics can be captured roughly by the
time structure at q ¼ π. In this sense, along the time axis,
the evolution of the charge and spin structure factors reveals
an antiphase dynamics with the same frequency, reflecting

FIG. 1. (a) Diagram showing the photoexcitation process from
the Peierls ground state (top panel). This process is realized by a
coherent, uniform removal of an electron with zero net momen-
tum (middle panel). The consequence is projection of the ground
state into a Hilbert space with N − 1 particles and a reduced
charge modulation (bottom panel). (b) Phonon occupations and
(c) local moment at various λ and u. In both figures, the dashed
line denotes the antiadiabatic limit phase boundary (ueff ¼ 0) and
the solid line denotes the boundary of the Peierls phase in terms
of ground state degeneracy. The triangles indicate the positions of
correspondingly colored lines of Figs. 2(b) and 2(c).
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the underlying competition between the two orders, which
is manipulated by photoexcitation. This situation occurs
only when the underlying orders are intertwined and is
expected to be amplified in proximity to a transition
between the two phases as they compete for the
ground state.
To further investigate the nonequilibrium dynamics of

intertwined orders, we next compare Nðπ; tÞ and Sðπ; tÞ for
various coupling parameters as shown in Figs. 2(b) and 2(c),
respectively. Deep in the Peierls phase (green lines), one sees
a rather robust CDW with Nðπ; tÞ suppressed less than 5%
following photoexcitation (it drops immediately at t ¼ 0 due
to photodoping), as a result of strong localization without
significant competition. However, a strong suppression
(enhancement) of the charge (spin) structure factors occurs
near the crossover (blue and red lines). To parametrize the
robustness against photoexcitation, we define the coeffi-
cients of charge suppression ηch ¼ mint>0Nðπ; tÞ=Nðπ; 0þÞ
and spin enhancement ζsp ¼ maxt>0Sðπ; tÞ=Sðπ; 0þÞ. As
shown in Fig. 2(d), ηch=ζsp decreases or increases rapidly
towards the phase boundary as the charge and spin excita-
tions become increasingly intertwined, while both asymp-
totically approach 1 when moving away as the CDW
becomes more robust.
We further analyze the periodicity of the structure factors

over a much longer time window, which is crucial for
classifying the low-energy bosonic modes as well as
the origin of competing orders [24]. We calculate the
(average shifted) Fourier spectrum over a time window
from 0 ∼ 256t−1h and extract the dominant frequency ω (see
Fig. S1 in the Supplemental Material [67]). In contrast to
the softened phonon mode at ω ¼ 0 associated with the

structural deformation inside the Peierls phase [68,69], this
frequency reflects electron dynamics relative to the defor-
mation. At the same time, the renormalized phonon
frequency Ωeff, as a result of interactions in the vicinity
of the crossover [68–70], can be evaluated through the
single-particle spectral function Aðk;ωÞ which reflects
the dynamics of the photohole. As shown in Fig. 2(e),
the agreement between ω and Ωeff for various parameters
indicates that the bosonic excitations associated with the
original photoexcited electron can be revealed by the
dynamics in the remnant system, connecting the two
descriptions. Physically, this oscillatory dynamics represent
an energy transfer between the lattice and the electrons,
which has been observed in many experiments [24,25,38].
We see that the spin and charge response in a photo-

excited, nonequilibrium system reveals information
about the basic underlying bosonic excitations. Here, they
are dominated by the bare phonon deep in the Peierls
phase, but become increasingly renormalized close to the
crossover where spin, charge, and phonon are intimately
intertwined. This can be especially significant in those
complex systems where the bosonic mode cannot be
directly measured or easily distinguished in the ARPES
spectra. In addition to the bosonic excitations near phase
boundary for a zero-momentum (or Γ point) photoexcita-
tion, a natural follow-up question is whether all the
electrons “feel” the same intertwined bosonic excitations,
particularly near the phase boundary where the competition
between the Mott and Peierls physics tends to be delicately
balanced.
To answer the above question, we further examine

the dynamics associated with photoexcitation for various
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FIG. 2. (a) False color plots of the spin densityΔSðq; tÞ and charge densityΔNðq; tÞ dynamics for u ¼ 7.8 and λ ¼ 4 (strong-coupling
regime) after photoexcitation at the Γ point. (b),(c) Evolution of (b) Nðπ; tÞ and (c) Sðπ; tÞ with various parameters (shown in the inset).
(d) The suppression of CDW ηch (solid markers) and enhancement of AFM ζsp (open markers) in the Peierls phase (shown in the inset).
(e) The comparison of dominant energy scales in Nðπ; tÞ and Sðπ; tÞ dynamics (solid circles) and the renormalized phonon frequencies
(open circles) evaluated via the equilibrium spectral function Aðk;ωÞ, as indicated in the inset. The frequencies are compared along
the u axis with λ ¼ 3, 4, and 5. The error bars denote the corresponding half width at full maximum in the Fourier spectrum due to a
finite time window.
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fermionic momenta k (rather than the restricted k ¼ 0) as
shown in Fig. 3. Deep in the Peierls phase [Fig. 3(e)] where
the bosonic excitations are gapped, the dynamics appear
uniform in momentum: all electrons feel a single disper-
sionless bare phonon as discussed previously. However,
approaching the crossover [Figs. 3(b)–(d) and 3(f)–(h)],
the bosonic excitations show a continuous, but uneven,
softening as a function of k, which results from a renorm-
alization by the electronic susceptibility. Because of
stronger coupling to the electrons near the Fermi surface,
the bosonic mode energy softens faster for k ∼ kF. At the
same time, a large number of low-energy excitations
appear, especially around kF [see Fig. 3(h)]. Once outside
the Peierls phase [Figs. 3(a) and 3(i)], the bare phonon
frequency is no longer visible and the bosonic spectra
display a low-energy continuum as spin excitations
become gapless in the Mott phase. This is the nature when
crossing between the two phases—even though both U and
λ may be large, the bosonic excitations lie at low energies
and are strongly entwined with a photohole having
momentum near kF.
In this sense, the photoexcited dynamics not only reflect

the bosonic mode coupled to the electrons, but also reveal
the softening of bosonic excitations due to intertwined
orders near the phase boundary. More importantly, this
unifies our understanding of fermionic and bosonic cou-
pling: the spin and charge susceptibility χðq;ωÞ reflects the
underlying physics but, also, must be linked to additional
information about the fermionic momentum and energy.
While the coupling parameter gq ¼ gδq;π in Eq. (1) is k
independent, the effective bosonic spectra extracted from
the dynamics associated with photoexcitation tell a deeper
story. In the regime when either order is dominant, the
dynamics faithfully reflect the spin and charge susceptibil-
ity, with little dependence upon the fermionic momenta

of the photoexcited electrons; however, the observed
dynamics turn out to be highly dependent on the fermionic
momentum near the crossover. In other words, not all the
electrons are sensitive to the same bosonic excitations in a
strongly intertwined system with competing orders. This
means that the coupling vertex, which would show up in
the single-particle self-energy, renormalizing fermions by
spin and charge excitations, must be strongly momentum
dependent in such a system near a transition due to the
combined impact of the e − e and e-ph coupling.
To summarize,we have studied the dynamics of a Mott-

Peierls system after photoexcitation from the Peierls phase
using an effective Peierls-Hubbard model with exact
diagonalization. We found that the suppression of charge
and enhancement of spin correlations reflects the under-
lying competition, which may be further increased near a
phase boundary. Furthermore, the dominant frequency
reveals the bosonic excitation, here, renormalized phonons,
coupled to the photoexcited electron. By examining the
dynamics following photoexcitation of electrons with
different momenta, we were able to observe an uneven
softening of the modes, renormalized by the electronic
susceptibility, and the possible emergence of additional
low-energy modes with a more complicated structure near
the crossover. This momentum dependence can be ampli-
fied near a QPT in a system with competing orders. Unlike
the traditional bosonic spectra which integrate out the
fermionic momenta, these nonequilibrium results provide
a new perspective in the study of strongly correlated
systems with intertwined orders.
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with fixed λ ¼ 4 and increasing u. Among them, (e) is deep in the Peierls phase; (b) and (h) are close to the phase boundary; (a) and (i)
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