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Frustrated magnetism from local moments in FeSe
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We investigate properties of a spin-1 Heisenberg model with extended and biquadratic interactions, which
captures crucial aspects of the low energy physics in FeSe. While we show that the model exhibits a rich
phase diagram with four different magnetic ordering tendencies, we identify a parameter regime with strong
competition between Néel, staggered dimer, and stripelike magnetic fluctuations, accounting for the physical
properties of FeSe. We evaluate the spin and Raman responses using exact diagonalization. Through comparison
with experiments we find enhanced magnetic frustration between Néel and collinear stripe ordering tendencies,
which increases with increasing temperature. The explanation of these spectral behaviors with this frustrated
spin model supports the idea of local spin interactions in FeSe.
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I. INTRODUCTION

Magnetic excitations are believed to play a significant role
in the high-Tc copper and iron-based superconductors [1,2].
Among the latter, FeSe has gained attention recently, in part
because of the discovery of a superconducting phase above
100 K [3] for monolayers grown on appropriate substrates.
Bulk FeSe exhibits a superconducting transition temperature
Tc of 9 K, which rises dramatically under pressure [4,5]; in
contrast, a single-layer FeSe film deposited on SrTiO3 sub-
strate exhibits a Tc increased by an order of magnitude [6–9].

Like other iron chalcogenides, FeSe consists of alternating
iron and chalcogenide planes, with van der Waals bonds
holding together quasi-two-dimensional (2D) layers in the
bulk [10,11]. When cooled across a characteristic temperature
TS ∼ 90 K, FeSe undergoes a nematic transition that breaks C4

crystal rotational symmetry in the iron plane with a tetragonal
to orthorhombic structural transition [12,13]. While the iron
pnictides display a collinear striped spin-density-wave (SDW)
phase immediately following a similar structural transition
[14–16], and other iron chalcogenides possess magnetic or-
ders [17,18], no long-range magnetic order has been observed
for FeSe [19].

Considering the critical role that spin fluctuations may play
in the unconventional, iron-based superconductors [2,11,20],
understanding the magnetic properties of iron chalcogenides,
in particular FeSe, is helpful in identifying the nature of
the pairing mechanism. To that end, experimental evidence
from neutron scattering for magnetic frustration [19] and
competing magnetic ordering tendencies found in mean-field
theoretical solutions of spin models [21] paint a picture of
finely balanced interactions among various magnetically or-
dered phases.

Experimental and theoretical evidence suggests that de-
spite the fact that FeSe is a metal with itinerant electrons, the
low energy physics in FeSe can be described well in terms
of localized electrons, owing to strong electronic correlations
[22–24], with a fluctuating magnetic moment of 〈m2〉 ∼ 5 μ2

B
per Fe atom [19] corresponding to S = 1.

A mean-field phase diagram for this type of localized elec-
tron model shows four dominant magnetic phases: Néel order
[(π, π )], a collinear striped phase [(π, 0) or (0, π )], a stag-
gered dimer phase [(π, π/2) and equivalent], and a double
stripe phase [(π/2, π/2) and equivalent] [21]. Previous ex-
periments and first-principles studies have measured spin cor-
relations consisting of multiple wave vectors, demonstrating
a magnetic frustration lacking long-range order [19,24]. This
motivates the use of a spin-1 Heisenberg model with long-
range spin interactions in a regime with magnetic frustration
[21,25]. Two regions of the phase diagram were previously
identified as appropriate for FeSe: a parameter regime with
competition between the Néel and collinear striped orders, and
one between the staggered dimer and collinear striped orders.

II. MODEL AND METHODS

Here we study the physics of a spin-1 Heisenberg model
on a two-dimensional, 16-site cluster using exact diagonal-
ization. Through benchmarking with mean-field theory and
two different experiments, our study sets the stage for in-
vestigating the nature of FeSe within the spin model. For
parameters tuned to a frustrated region among the Néel order,
staggered dimer, and collinear striped phases we evaluate the
temperature dependence of the dynamical spin structure factor
S(q, ω) and the Raman scattering cross section. Consistent
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with neutron scattering [19], we find intense fluctuations of
the collinear stripe order at low temperatures that give way to
enhanced fluctuations at the Néel order wave vector for higher
temperatures. Raman scattering [26] suggests a dominant spin
character for a persistent peak in the B1g symmetry close to
60 meV, which softens slightly at higher temperatures.

Due to strong electron correlations and the fluctuating
magnetic moment, which neutron experiments have found
to correspond well with a S = 1 system [19], the spin-1
J1-J2-J3-K Heisenberg model, and similar variants, have been
used to study the magnetic properties of FeSe [21,25]. The
Hamiltonian can be written as

H =
∑

〈i, j〉
[J1 Si · S j + K (Si · S j )

2]

+
∑

〈〈i, j〉〉
J2 Si · S j +

∑

〈〈〈i, j〉〉〉
J3 Si · S j, (1)

where Si = (Sx
i , Sy

i , Sz
i ) is a spin operator at site i, Jα (α =

1, 2, 3) are the nearest, next-nearest, and next-next-nearest-
neighbor exchange interactions, and K is the nearest-neighbor
biquadratic interaction. The nearest-neighbor exchange term
J1 favors a Néel state, while the longer-range exchange terms
(J2 and J3) frustrate it. A large J2 or J3 can overwhelm J1

and drives the staggered dimer or double stripe phase [21].
In addition, the biquadratic term K modulates fluctuations
depending on the sign: a negative K suppresses quantum
fluctuations towards an Ising-like model [21], while a positive
K enhances quantum fluctuations [27] and has been found
to favor a semiordered semiclassical ground state, containing
some correlations between neighboring sites in an otherwise
disordered system [28]. In this work we adopt a small positive
K to enhance quantum fluctuations.

We study the model on a 4 × 4 cluster with periodic bound-
ary conditions. This 16-site system provides access to all the
relevant momenta, while remaining computationally tractable
for the temperature range of interest. While determining the
ground state for such a problem is not computationally chal-
lenging, a study of the temperature dependence requires an
accurate evaluation of the excited states to cover an energy
spectrum in excess of the thermal energy scale set by the
temperature T . We adopt the parallel Arnoldi method [29] to
determine the eigenstates and energies, and use the continued
fraction expansion [30] to calculate the finite-temperature
dynamical structure factor and Raman response function.

A crucial task of this work is determining a physical
set of model parameters, within the J1-J2-J3-K Heisenberg
model, that accounts for the low-energy properties of FeSe.
To examine its dominant magnetic fluctuations and ordering
instability as a function of these parameters, we first evaluate
the static spin correlation function

S(q) = 1

N

∑

l

eiq·rl
∑

i

〈
Sri+rl · Sri

〉
, (2)

where rl represents the coordinate of site l on the cluster and
the expectation value is taken with respect to the ground state
at zero temperature. To fairly parametrize the relative strength
of fluctuations with different characteristic wave vectors, we
normalize the relative intensity of the dominant and largest
subdominant correlation functions. Thus, the relative strength
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FIG. 1. Zero temperature “phase diagram” for the J1-J2-J3-K
spin-1 Heisenberg model with K = 0.1 J1. The four different colors
represent regions in parameter space dominated by fluctuations of
the spin arrangement depicted in each cartoon, where green is Néel,
red is staggered dimer, blue is collinear stripe, and orange is double
stripe. The color intensity denotes the relative strength I , as defined in
Eq. (3). The black circle (J2 = 0.528 J1, J3 = 0) denotes parameters
for which we calculate the dynamical spin structure factor and
Raman susceptibility as a function of temperature.

of fluctuations is projected onto the range [0,1) by

I = 1 − dqsub S(qsub)

dqdom S(qdom )
, (3)

where dq is the geometric degeneracy for each equivalent
momentum point on the 4 × 4 cluster and qdom/sub denotes
the value of q for which dqS(q) is largest (dominant)/second
largest (subdominant). Figure 1 shows the resulting phase
diagram, which displays the order with the dominant corre-
lation not the true long-range order of the system, obtained
in this manner for the J1-J2-J3-K model. Clearly, in contrast
to the Néel order state (green) in the canonical Heisen-
berg model, the next-nearest-neighbor exchange J2 favors
a collinear striped state (blue) while the longer-range J3

stabilizes a double stripe state (orange) above some critical
couplings. In the middle of these three states, the combined
impact of exchange interactions induces a staggered dimer
region (red). Near the boundaries large fluctuations due to
frustration suppress the states (white regions).

Given the various instabilities of the J1-J2-J3-K model, can
one find a parameter regime appropriate for FeSe? Previously,
Wang et al. adopted a J1-J2 model near the quantum paramag-
netic phase around J2 ∼0.5 J1 [25] and Wang et al. suggested
a point in the staggered dimer region near the boundary with
collinear striped order (for negative K) [19]. Both involve
competition between collinear striped order and some other
state. This would be consistent with recent neutron scattering
data, showing both collinear striped and, slightly weaker, Néel
order fluctuations at low temperatures, with spectral weight
transfer between them upon changing the temperature. Such
an experimental observation suggests that the low-energy
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magnetic properties of FeSe can be described by a parameter
set inside the collinear stripe region close to its boundary.

III. SPECTRAL RESULTS

In addition to neutron scattering, the Raman response
provides another clue about a proper parameter regime for
FeSe as it captures the two-magnon excitations. As a collec-
tive mode, the two-magnon excitations depend sensitively on
the form and strength of magnetic interactions [31]. At low
energy, the experimental Raman response in B1g symmetry
consists of two dominant contributions which can be separated
in the temperature range around TS [26]. The peak in the range
below 200 cm−1 was interpreted previously in terms of charge
nematic fluctuations [32]. We return to this point briefly later.
Here we focus on the broad peak centered at 500 cm−1 which
softens slightly and loses weight with increasing temperature
[26]. We argue that this part of the Raman response originates
from spin excitations and will elaborate now on the theoretical
details.

In the Fleury-Loudon formalism [31], the Raman scatter-
ing operator is written as Ô = ∑

i, j Ji j (êin · d̂i j )(êout · d̂i j ) Si ·
S j [33], where Ji j are exchange coupling strengths in the
spin Hamiltonian, d̂i j represent unit vectors connecting sites
i and j, and êin/out are the polarization vectors for the
incoming/outgoing photons, respectively. The light polariza-
tions that encode the Raman symmetry channels are

êin = 1√
2

(x̂ + ŷ), êout = 1√
2

(x̂ + ŷ) for A′
1g,

êin = x̂, êout = ŷ for B2g, (4)

êin = 1√
2

(x̂ + ŷ), êout = 1√
2

(x̂ − ŷ) for B1g,

where A′
1g = A1g ⊕ B2g. In this work we mainly focus on the

B1g channel as it directly reveals the two-magnon excitation,
while the A1g and B2g spectra serve as additional experimental
comparison.

Using the Raman scattering operator Ôα , we evaluate the
temperature-dependent Raman response in different symme-
try channels as

Rα (ω)= −
∑

n

e−βEn

πZ
Im〈ψn|Ô†

αW −1Ôα|ψn〉, (5)

where α denotes a particular symmetry channel, Z is the
partition function, W = ω+En+iε−H, and |ψn〉 and En

are the nth eigenstate and energy, with the sum taken over
all eigenstates of the Hamiltonian in Fock space [30]. We
use ε = 0.15J1 in the continued fraction step. To remove
the elastic peak, it is convenient to calculate the Raman
susceptibility χ ′′

α (ω)=Rα (ω)−Rα (−ω). Due to the compu-
tational challenges, we truncate the summation at an energy
E0 + 2J1, while providing sufficient states for evaluating the
temperature dependence of spectra up to T = 0.25J1 (all
states contributing a weight e−βEn > e−5).

As shown in Fig. 2, the Raman susceptibility at zero tem-
perature changes dramatically with J2. In B1g symmetry (mid-
dle panel) the two-magnon excitation starts around an energy
of 7.5J1 for J2 = 0, then softens uniformly approaching the
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FIG. 2. Raman susceptibility χ ′′(ω) at zero temperature as a
function of J2, with J3 = 0 and K = 0.1J1 for A1g (top), B1g (middle),
and B2g (bottom) symmetries. The two vertical black boundary lines
and the top color bar sketch regions with distinct dominant correla-
tions [Néel order (left), staggered dimer (middle), and collinear stripe
(right), as in Fig. 1].

boundary between the staggered dimer and collinear striped
phases. The energy for this two-magnon excitation can be
estimated by counting the number of interactions that change
sign with a double spin flip. Across the transition from Néel
to staggered dimer, the transition is gradual as demonstrated
by the wide white region in Fig. 1. In contrast, the transition
across staggered dimer and collinear stripe order is more
abrupt and leads to discontinuous changes in the Raman spec-
tra. Taking a value of J1 = 123.1 meV from first-principles
calculations [21], it becomes clear that consistency between
the experimental position of the peak at roughly 500 cm−1

and the theoretical two-magnon energy can only be obtained
for J2/J1 ∼ 0.5, near the boundary between the staggered
dimer and collinear striped phases. This parameter range is
also consistent with the general notion of highly frustrated
magnetism in FeSe. We identify the best agreement in this
region with J2 = 0.528J1, J3 = 0, and K = 0.1J1 (the black
dot shown in Fig. 1). The significance of these parameters
is presumably the positive biquadratic coupling K and the J2

value that puts the system very close to the phase boundary in
the immediate vicinity of the collinear stripe region. The exact
numerical values of the parameters that describe FeSe are ex-
pected to change slightly in other finite size clusters and in the
thermodynamic limit. As we show next, the finite temperature
Raman and neutron scattering experiments compare favorably
with simulations for these parameters.

Figure 3 displays the temperature dependence of the B1g

Raman susceptibility for the chosen parameters. We observe a
single dominant peak. With increasing temperature, this peak
softens slightly, before hardening again at higher temperature.
The peak gradually loses intensity up to the highest simulated
temperatures. In fact, thermal broadening occurs in all sym-
metries, while B1g remains dominant. This dominant peak that
softens with increasing temperature before hardening again
agrees well with experiment [26], suggesting that a local
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FIG. 3. (a) The imaginary part of the Raman susceptibility for
B1g symmetry as a function of temperature. (b) Cuts of Raman
spectra at T = 0 (blue), 0.12J1 (orange), and 0.24J1 (red), indicated
by the arrows.

spin model provides an adequate description of the dominant
degrees of freedom in Raman scattering from FeSe in this
energy range. We will see that the temperature dependence of
this softening coincides with the temperature dependence of
spectral weight transfer observed in S(q = (π, π ), ω), further
reinforcing the connection between the peak in the Raman
response and two magnon excitations.

The spectral range below the magnon excitations is dom-
inated by critical fluctuations peaking at 50 cm−1 close to
TS [26,32]. The origin of these fluctuations is not obvious.
While Massat et al. argue for orbital (charge) fluctuations
[32] critical spin fluctuations cannot a priori be excluded in
the ubiquitous presence of magnetism. Yet, our simulations in
the spin channel do not support this interpretation. However,
critical fluctuations cannot be captured by a simulation on
a 4 × 4 cluster since they are characterized by a diverging
correlation length for T → TS. The shoulder on the low-
energy side of the magnon excitation may be a remainder of
the fluctuations but further studies are necessary.

In A1g symmetry [Fig. 4(a)], there is a single peak at
slightly higher energy than the one found in the B1g channel.
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FIG. 4. The imaginary part of the Raman susceptibility for
(a) A1g and (c) B2g symmetries at temperatures as indicated. (b) and
(d) Cuts corresponding to A1g and B2g Raman spectra at three
temperatures T = 0, 0.12J1, and 0.24J1.
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FIG. 5. (a)–(c) S(q, ω) as a function of temperature for q =
(π, π ) (Néel), q = (π, π

2 ) (staggered dimer), and q = (π, 0)
(collinear stripe), respectively. More detailed temperature depen-
dence can be seen for three temperature cuts of (π, 0) in (d). As
temperature increases, spectral weight shifts to lower energy at
(π, π ) and (π, π

2 ), and to higher energy at (π, 0).

This peak decreases in intensity and hardens slightly with
increasing temperature. In B2g symmetry, shown in Fig. 4(b),
we see several peaks spread out over the energy range of 2J1

to 8J1. The general trends for each of these symmetries, and
in particular the dominant peak in B1g symmetry, correspond
well with recent Raman scattering data [26].

While we have seen that Raman scattering provides some
information about magnetic excitations in the model, much
more detailed information comes from the dynamical spin
structure factor

S(q, ω) = −
∑

n

e−βEn

πZ
Im〈ψn|Sz

−qW −1Sz
q|ψn〉, (6)

where Sz
q = 1√

N

∑
l eiq·rl Sz

l . Figure 5 shows S(q, ω) as a func-
tion of temperature for q = (π, 0), (π, π ), and (π, π

2 ). At
T = 0, the lowest-energy spin excitation occurs at (π, 0),
with significant fluctuations at slightly higher energy in (π, π

2 )
and (π, π ), indicative of a frustrated magnetic system. With
increasing temperature, the spin excitation at (π, 0) hardens
slightly and loses intensity, while it softens substantially at
(π, π ) and (π, π

2 ). This temperature dependence is reminis-
cent of the neutron scattering data [19], and the enhanced
competition is consistent with the evolution of the B1g Raman
response in Fig. 3, further highlighting the role of magnetic
frustration in FeSe.

IV. DISCUSSION

Interestingly, only a small region of parameter space with
K ∼ 0.1J1 displays a temperature dependence consistent with
the B1g Raman and the spin response, at least in this 16-
site cluster calculation (Raman response functions for other
parameters shown in the Appendix B). The origin of this
softening and its sensitivity to K is difficult to assess in a

125130-4



FRUSTRATED MAGNETISM FROM LOCAL MOMENTS IN … PHYSICAL REVIEW B 99, 125130 (2019)

FIG. 6. Energy and magnetic fluctuations associated with the five
lowest energy excited states for K = 0 (top) and 0.1J1 (bottom), as a
function of J2 for J3 = 0. The black boxes enclose a range of J2 where
the ground state and possibly a nearly degenerate state of collinear
striped order are followed by states characterized by a dominant
staggered dimer phase. The color coding of each circle follows the
same convention as Fig. 1.

simple spin-wave picture due to the many-body nature of this
biquadratic term. Fortunately, with the full wave functions
obtained by exact diagonalization, we can study the magnetic
fluctuations and competition directly through eigenstates of
the Hamiltonian. Figure 6 shows detailed information about
the five lowest eigenstates as a function of J2 for two different
values of K . The color of each point represents the dominant
magnetic character of the eigenstate, following the same
convention as Fig. 1. Crossing the boundary to the collinear
striped phase, there is a small region (highlighted by the black
boxes) where the low-lying excited states possess a staggered
dimer or mixed character. In this region, while both values of
K result in similar ground states and zero-temperature Raman
and neutron scattering spectra, only K = 0.1J1 provides the
ingredients for a temperature dependence consistent with

experiments, because of its much smaller excitation gap and
larger density of excited states. These states are responsible
for the softening of the B1g peak, as well as the energy shift
and weight transfer of the dynamical spin structure factor.

V. CONCLUSION

In summary, we present a systematic exact-diagonalization
study of the magnetic fluctuations and spectra in a local spin
J1-J2-J3-K model. This model displays a rich phase diagram
influenced by magnetic frustration. A comparison of the
dynamical spin and Raman response to experimental results
underscores that this model provides a consistent description
of the magnetic properties of FeSe, lying at the boundary
between the collinear stripe, Néel order, and staggered dimer
phases. Through a detailed analysis of the eigenstates, we
attribute the temperature evolution of the spectra to the com-
petition between various finely balanced magnetic ground
and excited states, and hence explain the crucial role of
the biquadratic coupling. Our results suggest that magnetic
frustration plays a dominant role in the low-energy physics of
FeSe, which may additionally support the intrinsic connection
between spin fluctuations and unconventional superconduc-
tivity. We find that local spins give an adequate description of
these magnetic properties.
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FIG. 8. The imaginary part of the Raman susceptibility for B1g

symmetry for K = 0, J2 = 0.57J1, and J3 = 0. These parameters are
found in the collinear stripe region near the transition to staggered
dimer.

APPENDIX A: LINE SHAPE OF THE B1g RAMAN
SPECTRA OF FeSe

The interaction of photons and spin excitations may be
described by the Fleury-Loudon Hamiltonian O [31]. The
Raman response is then determined as described in Eq. (5) of
the main text. The Fleury-Loudon formalism is justified only
in the nonresonant case. If the intermediate electronic states
are eigenstates of the band structure not only the intensity but
also the line shape may depend on the energy of the photons
[34–36].

For justifying the applicability of the formalism we mea-
sured the B1g Raman response of FeSe for three different exci-
tation energies h̄ωI , 2.16 eV (575 nm), 2.41 eV (514 nm), and
2.71 eV (458 nm) [λI (nm) = 1240/h̄ωI (eV)]. The results
are shown in Fig. 7. Figure 7(a) displays the raw data at 40 K
after correcting for the spectral response of the system. All
spectra peak at approximately 530 cm−1, and the maxima are
asymmetric having a much slower decay on the high-energy
side than at low energies. The overall intensity increases by
a factor of almost 3 if h̄ωI increases from 2.16 to 2.71 eV.
Figure 7(b) shows that the line shape is independent of the
excitation energy. All spectra collapse on top of each other
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FIG. 9. The imaginary part of the Raman susceptibility for B2g
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found in the collinear stripe region near the transition to staggered
dimer.
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FIG. 10. The imaginary part of the Raman susceptibility for B1g

symmetry for K = 0.2J1, J2 = 0.47J1, and J3 = 0. These parameters
are found in the collinear stripe region near the transition to staggered
dimer.

when multiplied appropriately. Thus the line shape does not
depend on h̄ωI . Consequently, the response derived via Eq. (5)
of the main text is qualitatively correct. The experimental
and theoretical results are compared in Figs. 3 and 5 of
Ref. [26].

APPENDIX B: BIQUADRATIC COUPLING DEPENDENCE
OF RAMAN SPECTRA

We have found the positive biquadratic coupling to be
critical to the temperature dependence of the Raman sus-
ceptibility simulations agreeing well with experiment. Here
we show nonzero temperature simulations for K = 0 and
K = 0.2J1. We have picked parameters immediately inside the
collinear stripe region near the transition to staggered dimer
along J3 = 0, similar to the point highlighted in Fig. 1 of the
main text.

Figure 8 shows the B1g Raman susceptibility for K = 0.
This was calculated in the same way as in the main text except
that we used ε = 0.03J1 since the energy levels are more
closely packed. The spectrum still consists of a dominant low
energy peak but this peak does not soften as temperature is
increased, a signature of Raman scattering in FeSe in B1g

symmetry. In addition, the maximum is at a much lower
energy than for K = 0.1. Figure 9 shows the B2g Raman sus-
ceptibility for the same parameters. This spectrum is similar
to what we see for the parameters used in the main text.
We do not show the A1g susceptibility for these parameters

FIG. 11. The imaginary part of the Raman susceptibility for K =
0.2J1, J2 = 0.47J1, and J3 = 0 for A1g (a) and B2g (b) symmetries.
These parameters are found in the collinear stripe region near the
transition to staggered dimer.
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since it is zero with the Raman operator we have used
when K = 0.

Figure 10 shows the B1g Raman susceptibility for K =
0.2J1, again immediately inside the collinear stripe region.
Here we see again a single peak that does not soften with
increasing temperature. Figure 11 shows the A1g and B2g

susceptibilities. These are similar to the results shown in the
main text with a single low energy peak in A1g symmetry and a
more spread out spectrum for B2g symmetry. Again we see that
the temperature dependence of the B1g Raman susceptibility is
what distinguishes the biquadratic coupling parameter used in
the main text from other values.
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