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Ultrafast characterization and control of many-body interactions and elementary excitations are critical
to understanding and manipulating emergent phenomena in strongly correlated systems. In particular, spin
interaction plays an important role in unconventional superconductivity, but efficient tools for probing spin
dynamics, especially out of equilibrium, are still lacking. To address this question, we develop a theory for
nonresonant time-resolved Raman scattering, which can be a generic and powerful tool for nonequilibrium
studies. We also use exact diagonalization to simulate the pump-probe dynamics of correlated electrons in the
square-lattice single-band Hubbard model. Different ultrafast processes are shown to exist in the time-resolved
Raman spectra and dominate under different pump conditions. For high-frequency and off-resonance pumps, we
show that the Floquet theory works well in capturing the softening of bimagnon excitation. By comparing the
Stokes and anti-Stokes spectra, we also show that effective heating dominates at small pump fluences, while a
coherent many-body effect starts to take over at larger pump amplitudes and frequencies on resonance to the
Mott gap. Time-resolved Raman scattering thereby provides the platform to explore different ultrafast processes
and design material properties out of equilibrium.
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I. INTRODUCTION

Ultrafast detection and engineering of physical proper-
ties are the ultimate goal of nonequilibrium studies [1–3].
Among different degrees of freedom in solids, spin physics
plays an important role in unconventional superconductivity
[4–6], frustrated magnetism [7,8], magnetic materials [9], and
spintronics [10,11]. Understanding collective spin excitations
out of equilibrium is also crucial for the explanation of
photoinduced emergent phenomena like transient supercon-
ductivity [12–14]. Due to the fluence limitation, however, the
spin-sensitive inelastic neutron scattering cannot be applied
as an ultrafast technique. Therefore, although nonequilib-
rium dynamical spin structure factors were predicted theoret-
ically [14–17], they cannot be directly measured in ultrafast
experiments. With the recent advance of photon spectro-
scopies, probing spin dynamics through the charge channel
has become promising [18–20]. For example, equilibrium
Raman scattering was used to measure bimagnon excitations
and provide information for the underlying spin interactions
[21–24]. Time-resolved Raman scattering [25] was employed
to detect lattice and molecule vibrations [26–34] and has been
pushed forward to study collective excitations of quantum
materials in recent years [18,35]. However, without a micro-
scopic nonequilibrium theory, a systematic and predictable
engineering in correlated systems is still not practical to date.
As we shall demonstrate theoretically below, time-resolved
Raman spectroscopy can provide a platform to distinguish
different ultrafast procedures and pave the way to precise
engineering of spin interactions out of equilibrium.

On general grounds, pump-induced ultrafast behaviors in-
clude effective heating, transient Floquet band renormaliza-
tion, and nonthermal many-body excitation. These processes
are sketched in Fig. 1. Under an infinitely long periodic
driving field, a system is known to exhibit a superposition
of Floquet steady states [36,37]. Via photoassisted virtual
hoppings, the corresponding band renormalization and repli-
cas can correct the effective spin exchange J [16,38]. Since
the Floquet steady states can be precisely predicted by the
external pump conditions, this renormalization effect can
be adopted to engineer the underlying physical parameters.
However, this process requires infinitely long pump and off
resonance with direct excitations across a charge gap. This is
not practical in realistic experiments, where the pump pulse
has a finite-time profile, and the duration of an infrared or
terahertz pump can be comparable to its oscillation period.
Thus, a resonant excitation is unavoidable due to the existence
of higher-energy unoccupied states. This residual resonance
to the lowest order can cause effective heating [39–41], unless
the systems are integrable or many-body localized as in ideal
theoretical scenarios [42–44]. Reducing the pump width and
probe delay can suppress thermalization [45–47] but restrict
exotic Floquet physics. Moreover, many-body physics can
lead to nonlinear modulation of electronic structure, which
cannot be attributed simply to effective heating [48–50]. The
above three effects exist in realistic ultrafast experiments, and
their interplay determines the final Raman spectra in the time
domain.

In this paper, we derive the theory for nonresonant time-
resolved Raman scattering and use exact diagonalization to
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FIG. 1. Different ultrafast processes induced by a pump field:
effective heating or thermalization, transient (Floquet) band renor-
malization, and nonthermal many-body excitation.

compute the pump-probe Raman spectra for a square-lattice
single-band Hubbard model. We show that bimagnon excita-
tions can be reflected in Raman spectra and that each mech-
anism depicted in Fig. 1 can become dominant under differ-
ent pump conditions. In particular, a low-frequency resonant
pump results in clear thermalization, while a high-frequency
nonresonant pump causes a Floquet renormalization of the
energy scale J . Both scenarios, however, are violated for
extremely strong pumps, where many-body excitations take
over. Being the first theoretical investigation of time-resolved
Raman scattering in strongly correlated materials, our work
provides a platform to study different ultrafast mechanisms
and nonequilibrium spin excitations. These different mecha-
nisms can be observed over a wide range of pump conditions
from infrared to ultraviolet lasers, and our results are expected
to be valid for a variety of correlated electron systems.

The rest of this paper is organized as follows. In Sec. II, we
derive the theories of Raman spectroscopies both in and out of
equilibrium, with a focus on nonresonant Raman scattering. In
Sec. III, we show simulations of time-resolved Raman spectra
for a correlated Hubbard system in a pump-probe experiment.
Floquet engineering of spin exchange interactions and extrac-
tion of effective temperature are also discussed. We conclude
the paper in Sec. IV by summarizing our main results.

II. THEORY OF TIME-RESOLVED RAMAN SCATTERING

The influence of an electromagnetic field for single
band systems can be introduced through a Peierls substitution
ciσ → ciσ e−i

∫ ri
−∞ A(r′,t )·dr′

. Here, ciσ is a fermionic annihilation
operator for an electron of spin σ on lattice site i, and A is a
vector potential containing both pump and probe fields. Since
the pump is typically strong and explicitly treated, we denote
the pump Hamiltonian as H0 and expand the Hamiltonian H
in powers of the probe field A(pr) [23]:

H(t ) = H0(t ) + Hpr (t ), (1)

Hpr (t ) ≈ −
∑
r,α

ĵα (r)A(pr)
α (r, t )

− 1

2

∑
r,α,β

γ̂αβ (r)A(pr)
α (r, t )∗A(pr)

β (r, t ), (2)

where α denotes the light polarization direction. For
Hamiltonians with nearest-neighbor (NN) hopping,
A

(pr)
α (r, t )=∫ r+1α

r A(pr)(r′, t )·dr′, the paramagnetic current

density operator ĵα (ri) = ith
∑

σ (c†i+1α,σ ciσ − c
†
iσ ci+1α,σ ),

and the scattering vertex γ̂α (ri) = −th
∑

σ (c†iσ ci+1α,σ +
c
†
i+1α,σ ciσ ). We consider the whole procedure starting from

the equilibrium ground state of the static Hamiltonian H0(t =
−∞). Therefore, for the equilibrium spectrum, H0(t ) ≡ H0

is time independent; for the nonequilibrium pump-probe
spectrum, H0(t ) contains the original Hamiltonian with the
presence of a time-dependent pump field.

In the Fourier space of momentum transfer q, the vector
potential reads A

(pr)
α (q, t )= 1

N

∑
r e−iq·rA(pr)

α (r, t ). With the
effective mass approximation, ĵα(q)=∑

kσ (∂εk/∂kα )
c
†
k+q/2,σck−q/2,σ , and γ̂αβ(q)=∑

kσ (∂2εk/∂kα∂kβ )c†k+q/2,σ

ck−q/2,σ . The fermionic operator ckσ annihilates an electron of
momentum k and spin σ . On a square lattice with NN hopping
amplitude th, the band structure εk is −2th(cos kx + cos ky ).
The probe Hamiltonian then becomes

Hpr (t ) = −
∑
q,α

ĵα (q)A(pr)
α (q, t )

− 1

2

∑
q,qi
α,β

γ̂αβ (q)A(pr)
α (qs , t )∗A(pr)

β (qi , t ), (3)

where qi (qs) is the incident (scattering) photon momentum
and q ≡ qi − qs is the net momentum transfer.

Within the linear-response theory, the cross sections of
various photon spectroscopies can be obtained through a
perturbative expansion. Below we first recapitulate the theory
of equilibrium Raman spectroscopy [23]. We then derive
the nonequilibrium pump-probe Raman cross section, with
a focus on nonresonant scattering. We compare both for-
malisms at the end of this section and discuss a probe-induced
linewidth broadening.

A. Equilibrium Raman cross section

While the single-photon absorption (∝A
(pr)
α ) concerns mea-

suring the photocurrent in optical conductivity, Raman scatter-
ing as a photon-in-photon-out procedure (∝A

(pr)
α A

(pr)
β ) probes

particle-hole excitations with a form factor. The Raman cross
section is proportional to the transition rate determined by
Fermi’s golden rule:

R(q, ωi, ωs )=
∑

n

|〈n|M̂ (q, ωi, ωs )|G〉|2δ(ω + EG − En),

(4)

where |G〉 and |n〉 are, respectively, the ground and excited
states and ω = ωi − ωs is the photon energy loss.

The effective light-scattering operator M̂ (q, ωi, ωs )
contains the “resonant” and “nonresonant” processes,
M̂ (q, ωi, ωs ) = M̂R(q, ωi, ωs ) + M̂N(q, ω). The resonant
scattering operator is

M̂R(q, ωi, ωs )

=
∑
α,β

[
−ĵβ (qs )†

1

H − EG − ωi − i0+
ĵα (qi )

+ ĵα (qi )
† 1

H − EG + ωs + i0+
ĵβ (qs )

]
ê(i)
α ê(s)

β , (5)
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which involves processes through resonant intermediate
states. The nonresonant scattering operator is

M̂N(q, ω) =
∑
α,β

ê(i)
α ê(s)

β γ̂αβ (q), (6)

where ê(i)
α and ê(s)

β denote, respectively, the polarizations of
incident and scattering photons, which can be configured
in experiment. In this sense, M̂N(q, ωi, ωs ) describes a col-
lective excitation with direct energy ω and momentum q
transferred between electrons and photons.

In optical Raman scattering q ≈ 0, the transition into
resonant intermediate states can be ignored. The resulting
nonresonant Raman response then reads

RN (q, ω) = 1

π
Im〈G|γ̂ †(q)

1

H − EG − ω − iδ
γ̂ (q)|G〉, (7)

where γ̂ (q) = ∑
α,β ê(i)

α γ̂αβ (q)ê(s)
β and δ is a phenomeno-

logical lifetime broadening effect. Below we focus on the
long-wavelength optical limit q ≈ 0 and omit the q label.
Here, we present the result at zero temperature in order
to facilitate the comparison with pure-state dynamics later.
A finite-temperature spectrum can be obtained through an
ensemble average of Eq. (7) over the full Hilbert space.

On a tetragonal lattice, the scattering vertices can be de-
composed into the irreducible representation of the D4h point
group [23]. Specifically, in the A1g (xx + yy) channel

γ̂A1g
=

∑
kσ

(
∂2

∂k2
x

+ ∂2

∂k2
y

)
εkc

†
k,σ ck,σ , (8)

and in the B1g (xx − yy) channel

γ̂B1g
=

∑
kσ

(
∂2

∂k2
x

− ∂2

∂k2
y

)
εkc

†
k,σ ck,σ . (9)

With NN hopping, the vertices in the brackets are proportional
to (cos kx + cos ky) and (cos kx − cos ky), respectively. With
only nearest-neighbor hoppings and time-reversal symmetry,
the A2g (xy − yx) and B2g (xy + yx) channels both vanish.

B. Nonequilibrium Raman cross section

While one could phenomenologically extend Eq. (4) to
nonequilibrium without a precise treatment of the probe pro-
file, here, we present a detailed derivation by considering
explicitly a quantized photon field. By doing so, the derivation
can be extended to other nonequilibrium spectroscopies such
as time-resolved x-ray absorption and resonant inelastic x-ray
scattering, where the creation and annihilation of photons are
necessary.

In the second quantization of the photon field, A
(pr)
α (q) =

aqα + a
†
−qα , and Hpr can be rewritten as

Hpr (t ) = H(ab)
pr (t ) + H(ab2)

pr (t ) + H(sc)
pr (t ) + H.c. (10)

Here, the single-photon absorption part is

H(ab)
pr (t ) = −

∑
q,α

ĵα (q, t )aqα, (11)

the two-photon absorption part is

H(ab2)
pr (t ) = −1

2

∑
qi ,qs
α,β

γ̂αβ (qi − qs , t )a−qsαaqiβ , (12)

and the scattering part is

H(sc)
pr (t ) = −1

2

∑
qs ,qs
α,β

γ̂αβ (qi − qs , t )a†
qsα

aqiβ . (13)

Their Hermitian conjugates are written separately in Eq. (10),
and H(sc)

pr itself is Hermitian. In contrast to the equilibrium
situation, the pump-probe procedure involves the impact of
the pump field in the probe Hamiltonian. Specifically, the
fermionic momenta in ĵα and γ̂αβ are shifted by the instan-
taneous pump field k → k − A(t ). Therefore, Hpr (t ) still has
explicit time dependence in the linear-response expansion.

We proceed by expanding the unitary time propagator U in
terms of the probe Hamiltonian Hpr to second order:

U (t,−∞) ≈ T e−i
∫ t

−∞ H0(τ )dτ − i

∫ t

−∞
U0(t, τ )Hpr (τ )U0(τ,−∞)dτ

− i

∫ t

−∞
dt2

∫ t2

−∞
dt1 U0(t, t2)Hpr (t2)U0(t2, t1)Hpr (t1)U0(t1,−∞)

= T e−i
∫ t

−∞ H0(τ )dτ − i

∫ t

−∞
U0(t, τ )H(ab)

pr (τ )U0(τ,−∞)dτ − i

∫ t

−∞
U0(t, τ )H(ab2)

pr (τ )U0(τ,−∞)dτ

− i

∫ t

−∞
dt2

∫ t2

−∞
dt1 U0(t, t2)H(ab)

pr (t2)U0(t2, t1)H(ab)
pr (t1)U0(t1,−∞)

− i

∫ t

−∞
dt2

∫ t2

−∞
dt1 U0(t, t2)H(ab)∗

pr (t2)U0(t2, t1)H(ab)
pr (t1)U0(t1,−∞) − i

∫ t

−∞
U0(t, τ )H(sc)

pr (τ )U0(τ,−∞)dτ.

(14)

Here, we denote the unperturbed propagator as

U0(t2, t1) = T e
−i

∫ t2
t1

H0(τ )dτ
. (15)

Since the equilibrium ground-state wave function is usually
selected to be |ψ (t = −∞)〉, the Hermitian conjugate terms
of H(ab)

pr and H(ab2)
pr do not contribute to the first four integrals,
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as the ground state cannot emit any photons. The second
term in Eq. (14) is the single-photon absorption related to
linear optical conductivity. The third and fourth terms are
the two-photon absorption reflected in nonlinear conductivity.
The last two terms correspond to photon scattering with

a conserved photon number. The scattering amplitude and
Raman intensity are related to Sαβ

qiqs
= aqiβa

†
qiα and Oαβ

qiqs
=

Sαβ†
qiqs

Sαβ
qiqs

, respectively. The photon-in-photon-out scattering
operator selectively detects the last two integrals in Eq. (14)
through the observable 〈O〉(t ):

〈O〉(t ) = 〈ψ (−∞)|U0(−∞, t )Oαβ
qiqs

U0(t,−∞)|ψ (−∞)〉

+ 4
∫∫ t

−∞
dτdτ ′〈ψ (−∞)|U0(−∞, τ ′)H(sc)†

pr (τ ′)U0(τ ′, t )aqiαa
†
qsβ

aqsβa†
qiα

U0(t, τ )H(sc)
pr (τ )U0(τ,−∞)|ψ (−∞)〉

+ 2Re
∫∫ t

−∞
dτdt ′2

∫ t ′2

−∞
dt ′1〈ψ (−∞)|U0(−∞, t ′1)H(ab)†

pr (t ′1)U0(t ′1, t
′
2)H(ab)†

pr (t ′2)U0(t ′2, t )aqiαa
†
qsβ

aqsβa†
qiα

U0(t, τ )

×H(sc)
pr (τ )U0(τ,−∞)|ψ (−∞)〉 +

∫∫ t

−∞
dt2dt ′2

∫ t ′2

−∞
dt ′1

∫ t2

−∞
dt1〈ψ (−∞)|U0(−∞, t ′1)H(ab)†

pr (t ′1)U0(t ′1, t
′
2)H(ab)

pr (t ′2)

×U0(t ′2, t )aqiαa
†
qsβ

aqsβa†
qiα

U0(t, t2)H(ab)†
pr (t2)U0(t2, t1)H(ab)

pr (t1)U0(t1,−∞)|ψ (−∞)〉. (16)

The first term contributes only to the elastic background. The
last term involving intermediate states between t1 and t2 is
related to resonant scattering. In contrast, the second and third
terms are associated with nonresonant and mixed scatterings,
respectively. Like in the equilibrium case, when the incident
photon frequency ωi is off resonance to any excited state, the
last two terms in Eq. (16) can be ignored. Moreover, in the
optical limit q ≈ 0, the odd parity of ĵα (0) forbids any finite
resonant contribution. Without resonant intermediate states,
the absolute energies of incident and scattering photons are
irrelevant; only the energy difference ω = ωi − ωs is impor-
tant for nonresonant scattering. Therefore, the time-resolved
nonresonant optical Raman cross section can be written as

Rαβ (ω, t ) = 4
∫∫

dτdτ ′〈U0(−∞, τ ′)

×H(sc)†
pr (τ ′)U0(τ ′,∞)aqiαa

†
qsβ

aqsβa†
qiα

×U0(∞, τ )H(sc)
pr (τ )U0(τ,−∞)〉. (17)

As detectors collect response signals over a time period
much longer than the probe pulse width, the integral limit can
be set to +∞. Here, t in Rαβ (ω, t ) indicates the center of the
probe profile (which will be introduced later). Using Wick’s
theorem, Eq. (17) can be simplified to

Rαβ (ω, t ) =
∫∫ ∞

−∞
dt1dt2 χαβ (t1, t2)sqi

(∞, τ ′)∗sqs
(∞, τ ′)

× sqs
(∞, τ )∗sqi

(∞, τ ), (18)

where the response function

χαβ (t1, t2) = i〈ψ (t2)|γ̂αβ (t2)U0(t2, t1)γ̂αβ (t1)|ψ (t1)〉 (19)

and sq(t2, t1)=〈ψ (t2)|a†
qU0(t2, t1)aq|ψ (t1)〉. In the semiclas-

sical limit, the photon annihilation operator gives the square
root of the instantaneous photon number. Thus, sq(t2, t1)≈√

[nph
q (t2) + 1]nph

q (t1)e−iωq (t1−t2 ). In the finite-probe-width
limit t2 → ∞, n

ph
q (t2) = 0, so the photon part contributes

an instantaneous shape function with a phase factor
sqs

(∞, τ )∗sqi
(∞, τ ) ≈ g(τ ; t )e−iωτ . Therefore,

Rαβ (ω, t ) =
∫∫ ∞

−∞
dt1dt2e

iω(t2−t1 )g(t1; t )g(t2; t )χαβ (t1, t2).

(20)

The probe shape function g(t ′; t ) can be approximated by a
Gaussian pulse centered at time t with width σpr:

g(t ′; t ) = 1√
2πσpr

e−(t ′−t )2/2σ 2
pr . (21)

The polarization can be decomposed into an irreducible
representation of the D4h point group in the long-wavelength
limit. Therefore, Eq. (20) produces the time-resolved nonreso-
nant optical Raman cross section by replacing χαβ (t1, t2) with
various vertices. Specifically, in the A1g channel

γ̂A1g
(t ) = th

∑
k

{cos[kx − Ax (t )] + cos[ky − Ay (t )]}nk, (22)

and in the B1g channel

γ̂B1g
(t ) = th

∑
k

{cos[kx − Ax (t )] − cos[ky − Ay (t )]}nk. (23)

Note that A(t ) is the pump (instead of the probe) field, which
should be treated explicitly in the calculation.

C. Probe-induced linewidth broadening

When the pump field is turned off, A(t ) = 0, the scattering
vertices (22) and (23) are identical to Eqs. (8) and (9); the
Hamiltonian H0(t ) becomes time independent, and the system
is time-translationally invariant: χαβ (t1, t2) = χαβ (t2 − t1). In
this case, the time-dependent Raman cross section (20) sim-
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plifies to

Rαβ (ω, t ) = 1

2πσ 2
pr

∫∫ ∞

−∞
dt1dt2 eiω(t2−t1 )e−(t1−t )2/2σ 2

pr

× e−(t2−t )2/2σ 2
pr χαβ (t2 − t1)

= 1

2πσ 2
pr

∫∫ ∞

−∞
dT dτ eiωτ e

− (T −t )2

σ2
pr e

− τ2

4σ2
pr χαβ (τ )

= σ 2
pr

π

∫ ∞

−∞
dω′ e−(ω′−ω)2σ 2

prRαβ (ω′), (24)

where Rαβ (ω′) is nothing but the equilibrium Raman cross
section (7) with a zero (Lorentzian) broadening, δ = 0. There-
fore, the nonequilibrium Raman response Rαβ (ω, t ) in the
zero-pump limit reproduces exactly the equilibrium one with
a (Gaussian) linewidth ∼1/(

√
2σpr ). In fact, if the probe shape

function is set as g(t ′; t ) ∼ e−δ|t−t ′ |, the equilibrium cross
section (7) can be exactly recovered. To mimic a realistic
probe, however, the Gaussian shape function (21) is more
appropriate and is adopted in this paper. The finite probe
duration causes a finite energy broadening, which may lead
to (limited) uncertainty of physical observables, such as the
effective temperature discussed in Sec. III C.

III. NUMERICAL TIME-RESOLVED RAMAN SPECTRA
ON A CORRELATED SYSTEM

With the above formalism, below we use exact diagonal-
ization to compute the time-resolved Raman spectra on the
square-lattice single-band Hubbard model:

H = −th
∑
〈i,j〉,σ

c
†
iσ cjσ + U

∑
i

ni↑ni↓. (25)

Without further specification, the Hubbard interaction is set
to U = 8th as a typical choice for high-Tc cuprate com-
pounds. This choice leads to an effective spin exchange en-
ergy J = 4t2

h/U = 0.5th. The material-specific value of th
is ∼300–400 meV for the cuprates. We consider only NN
hopping, and the ground state of the model is a Mott insulator
with a predominant antiferromagnetic order.

As discussed above, while the probe field A(pr) is treated
with perturbation theory, the pump field A(t ) is considered
explicitly through a Peierls substitution. Here, we use an
oscillatory Gaussian vector potential in the temporal gauge to
simulate a pulsed laser pump:

A(t ) = A0e
−t2/2σ 2

cos(�t ) epol, (26)

where A0, σ , �, and epol are, respectively, the pump am-
plitude, width, frequency, and polarization. The time t = 0
corresponds to the center of the pump. The calculation is
performed on the Betts 12A cluster with periodic boundary
conditions. Due to the cluster’s tilted geometry, the diagonal
polarization in momentum space in fact reflects the horizontal
polarization in real space (see Fig. 2). We use the parallel
Arnoldi method [51,52] to determine the equilibrium ground-
state wave function |ψ (t = −∞)〉 and the Krylov subspace
technique [53–55] to evaluate the wave function’s time evolu-
tion |ψ (t+δt )〉 = e−iH(t )δt |ψ (t )〉.

Below we first give an overview of the main features of
time-resolved Raman spectra in the B1g channel. We then

(a) 12A Betts cluster (b) momentum space

FIG. 2. The Betts 12A cluster in (a) real space and (b) momen-
tum space. The gray arrows denote basis vectors. The solid and
dotted lines in (a) represent respectively the intra- and intercluster
hopping terms.

analyze two important processes: the Floquet renormalization
of spin exchange and effective thermalization, each of which
can dominate at different pump conditions. At the end of this
section, we provide a comprehensive discussion on the impact
of pump polarization and probe width on the nonequilibrium
Raman spectra.

A. Time-resolved B1g Raman spectra

Raman spectra usually exhibit a prominent elastic signal,
and the B1g channel is usually adopted to resolve the features
of low-energy excitations. Figure 3 shows the time-resolved
B1g Raman spectra with the horizontal pump polarization
epol = ex. The pump frequency and amplitude are set to � =
4th and A0 = 0.6, respectively. Before the pump enters, the
equilibrium spectrum exhibits a low-energy peak at ∼1.3th
attributed to bimagnon excitation. In the strong-coupling limit
U → ∞, the bimagnon energy of ∼3J represents two locally
bounded spin-flip excitations. The excitation energy is further
reduced due to finite charge fluctuations. Further calculations
with different strengths of U have supported the assignment of
the low-energy bimagnon peak (discussed later in Fig. 4). In
addition, a cloud of cross-gap charge excitations exists above
the Mott gap, approximately within the energy range [U −

ω
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FIG. 3. Time-resolved B1g Raman spectra with pump polariza-
tion epol = ex, frequency � = 4th, and amplitude A0 = 0.6. The
bimagnon and Stokes/anti-Stokes charge excitations are marked on
the right to guide the eye. Energy zero (defined as the equilibrium
ground-state energy) is denoted by the dashed white line. The oscil-
latory Gaussian pump is drawn as a solid white curve.
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FIG. 4. Time-resolved B1g Raman spectra with epol = ex, � =
6th, and A0 = 0.3 for (a) U = 8th and (b) U = 6th. The plots are
drawn in the same manner as in Fig. 3. The shaded curves to the
left of each panel show the corresponding equilibrium spectra; the
bimagnon peak is denoted by a darker color.

4th, U + 4th]. With our current choice of U , these charge
modes are well separated from the bimagnon peak, which
thereby provides an opportunity to track these excitations
individually. Since the 12A cluster breaks C4 symmetry, the
ground state shows a small, unphysical elastic peak. No
signals are observed below zero energy, as the system is at
the ground state.

In the presence of the pump, the bimagnon energy softens
transiently and becomes indistinguishable from the elastic
peak. This can be attributed to a renormalized spin exchange
interaction through the Floquet photoassisted process, as dis-
cussed later in Eqs. (27) and (28). Meanwhile, the anti-Stokes
features start to appear with the pump, and the Stokes exci-
tations across the Mott gap are suppressed accordingly. This
is a signature of pump-induced thermalization. Moreover, the
energies of cross-gap excitations are modified by the pump,
and new spectral poles near 4th start to develop. These new
“in-gap” states indicate the appearance of many-body excita-
tions beyond a simple heating effect. As mentioned before,
the three ultrafast processes in Fig. 1 are all reflected in the
time-resolved Raman spectra.

Figure 4 examines the time-resolved B1g Raman spectra
for two different strengths of Hubbard U . As the spin ex-
change energy is roughly J = 4t2

h/U , the bimagnon energy
for U = 8th is smaller than that for U = 6th, while the charge
gap is larger in the former by definition. When the pump effect
is present, the bimagnon softening is more obvious for U =
6th since the electron is more delocalized compared to that for
U = 8th. In general, the U = 6th case is more vulnerable to
the same pump condition, with greater bigmagnon softening,
more obvious anti-Stokes features, and stronger spectral re-
distribution inside the charge gap. A more delocalized system
also makes the calculation more sensitive to the small-cluster
size and geometry and causes a stronger equilibrium elastic
peak. These qualitative trends of the Raman spectra further
support the assignments of different spectral features and cor-
responding physical processes. Note that in Fig. 4 we consider
a pump frequency � = 6th, which should be on resonance
with certain excited states in both U = 6th and U = 8th. Due
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FIG. 5. The B1g Raman spectra with pump amplitude A0 varying
from 0 (bottom) to 1.5 (top) at pump frequency (a) � = 2th and (b)
� = 8th. The time is fixed at t = 0 (the center of the pump). (c)
Bimagnon energies as a function of A0 under high-frequency pumps
(� > U ). The solid curves are predicted by the Floquet theory in
the nonresonant limit. (d) Schematic cartoon showing specific spin
exchange bonds altered by a pump pulse field.

to the expected strong thermalization and many-body effects,
we thereby select a relatively weak pump strength A0 = 0.3.

B. Floquet manipulation of bimagnon excitation

Due to both thermalization and many-body scattering, the
bimagnon excitation can become less well-defined. Figure 5
tracks the Raman response for the bimagnon peak at time
t = 0 under various pump profiles. At a small pump frequency
� = 2th [Fig. 5(a)], the bimagnon energy remains unchanged,
but its peak width is gradually broadened with increasing
pump amplitude. This is consistent with the thermalization
mechanism, where a small number of particle-hole excitations
are created across the Mott gap. On the other hand, at a
larger pump frequency � = 8th [Fig. 5(b)], the bimagnon
energy and width can strongly depend on the pump amplitude.
The nonthermal mechanisms underlying these changes are
discussed below.

As shown in Fig. 5(c) for � = 12th − 16th, a high-
frequency pump with strong amplitude can soften signifi-
cantly the spin exchange J or the bimagnon energy. Here,
in order to reduce the impact of the elastic mode and better
resolve the bimagnon peak, we consider the RB1g

(ω, t ) −
RB1g

(−ω, t ) spectra to perform the peak analysis. This soft-
ening behavior can be understood by the Floquet renormal-
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ization at the nonresonant limit (m� �= U ) [16]:

J (A0)

J (A0 = 0)
=

+∞∑
m=−∞

J|m|(A0)2

1 + m�/U
, (27)

in which Jm(x) is the Bessel function of the first kind. With
our choice of the pump polarization, one third of the bonds
participating in bimagnon excitation will be strongly altered,
as illustrated in Fig. 5(d). Therefore, the resulting dynamically
renormalized bimagnon energy is

ωbimag(A0) ≈ ωbimag(0)

[
2

3
+ 1

3

+∞∑
m=−∞

J|m|(A0)2

1 + m�/U

]
. (28)

Figure 5(c) shows that the Floquet theory indeed can capture
the softening of the bimagnon. On the other hand, since a
finite-width pump contains all frequency components, it can-
not be completely off resonance. When the pump strength is
strong enough, the Floquet theory prediction can deviate from
the Raman calculation, as shown in Fig. 5(c). This deviation is
more apparent at lower frequency (� = 10 and 12th) than at
higher frequency (� = 16th) since the former is closer to U .

When the pump frequency is on resonance, the magnon
softening can be accompanied by other effects. At � = 8th =
U , shown in Fig. 5(b), the bimagnon in fact first hardens
with increasing A0, and the energy also deviates from the
Floquet prediction. Similar behaviors are also seen at � =
10th, shown in Fig. 5(c). This deviation signals a coherent
many-body renormalization due to the draining of electrons
to unoccupied, real states. These occupancies typically enter
through the corresponding energy and momentum positions of
the Floquet virtual states but become heavily renormalized by
many-body scattering [50]. The selected occupied states then
reversely correct the effective interaction and spin exchange
energy. The results in Fig. 5 demonstrate the possibility of
using specifically tailored pump frequency and amplitude to
engineer the spin exchange interaction out of equilibrium in a
well-controlled manner. In contrast to the previously predicted
ultrafast control of spin exchange interaction using theoret-
ical observables [16,56], the time-resolved Raman spectrum
provides a practical approach to measure this change in a
condensed-matter experiment.

C. Extraction of effective temperature

In addition to an energy shift, the bimagnon peak also
broadens rapidly with increasing A0 at high-frequency pumps.
This broadening phenomenon is especially apparent under
the resonance condition � ∼ U [see Fig. 5(b)]. In the fol-
lowing we quantitatively analyze the Stokes and anti-Stokes
responses after the pump (at time t = 10t−1

h ) to show the clear
distinction between on and off resonances. In the fluctuation-
dissipation theorem, the structure factor can be written as

R(ω) = 1

π

Im[χ (ω)]

e−ω/T − 1
. (29)

Since the imaginary part of the response χ (ω) is an odd func-
tion, R(−ω)/R(ω) = e−ω/T . Therefore, an effective temper-
ature can be defined as

Teff (ω) = ω

lnR(ω) − lnR(−ω)
. (30)
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FIG. 6. Effective temperatures Teff extracted from the postpump
(t = 10t−1

h ) ratio of Stokes/anti-Stokes responses averaged over the
energy range 4th < ω < 12th for the B1g Raman spectra. The colors
denote different pump frequencies �. The inset shows mean values
and standard deviations of Teff for � = 2th, 4th, and 6th.

Below we extract the effective temperatures Teff averaged over
the energy range 4th <ω<12th for the B1g Raman spectra
at each time. The uncertainty associated with the standard
deviation then can be defined for each Teff . Within this pro-
cedure, Teff remains nonzero even at A0 = 0. This is because
the fluctuation-dissipation theorem is exact only for spectra
with zero linewidth. Therefore, our finite-width probe would
give rise to a small error of 1/(

√
2σpr ) = 0.3th in estimating

Teff .
Figure 6 shows that increasing � would enhance Teff

linearly at small A0, as the fluence is roughly proportional
to �A2

0. However, at larger pump amplitudes A0 � 1, the
uncertainty of Teff can become comparable to its mean or even
diverge (see the inset of Fig. 6). This indicates that many-body
renormalization becomes dominant over thermalization un-
der high-frequency and large-amplitude pumps. Many-body
scattering can significantly alter the wave function and lead
to a nonequilibrium state, violating the fluctuation-dissipation
theorem. Reflected in the Raman spectra, it is the breakdown
of extracting effective temperatures from the Stokes and anti-
Stokes responses under strong pump pulse fields.

To further study the effective thermalization picture, we
also compute the time-resolved Raman spectra in the A1g

channel. As shown in Fig. 7(a), the strong elastic peak at
ω = 0 is the predominant feature. Due to this strong elastic
signal, the bimagnon peak cannot be resolved, but the cross-
gap charge excitations at ω > 4th are still clearly visible.
After the pump, a number of anti-Stokes responses appear.
We then obtain the corresponding Teff by following the same
procedure as in Fig. 6. At � = 4th [Fig. 7(b)], the effective
temperatures extracted from both the A1g and B1g channels
match fairly well within the errors for A0 � 0.9. Due to the
strong elastic peak, the A1g spectrum overestimates Teff and
contains larger errors for small A0. The consistency in Teff

extracted from two different Raman channels confirms that
effective heating of electrons is a reasonable description of
the intrinsic nonequilibrium physics for small A0. The same
conclusion is also reached for � = 8th [Fig. 7(c)], where the
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FIG. 7. (a) Time-resolved A1g Raman spectra with epol = ex,
� = 4th, and A0 = 0.6. The pump profile is identical to that in Fig. 3.
The plot is drawn in the same manner as in Fig. 3. (b) and (c)
Comparison of effective temperatures Teff extracted from A1g and B1g

Raman spectra at a postpump time t = 10t−1
h under different pump

frequencies, using the ratio of Stokes/anti-Stokes responses averaged
over the energy range 4th < ω < 12th.

deviation does not occur until A0 = 0.8. Due to the larger
fluence of a higher-frequency pump, it is expected that the
thermalization picture breaks down at smaller A0. Finally, we
note that the concept of effective heating may seem to work
better in the A1g channel [see Fig. 7(b), where the error bar
does not diverge even at A0 = 1.5]. This is because different
cross-gap charge modes can be selectively excited by different
scattering vertices, so a comprehensive examination of differ-
ent Raman channels may be necessary for the thermalization
description.

Inclusion of next-nearest-neighbor hopping t ′h in the
Hamiltonian [Eq. (25)] will lead to a nonzero B2g Raman
spectrum, which also can be employed to extract Teff . Using
the common choice of t ′h = −0.3th for the cuprates, we find
that the time-resolved B2g response (not shown) is two orders
of magnitude smaller than the B1g and A1g spectra. Due to
the weak effective next-nearest-neighbor spin exchange J ′ =
(t ′h/th)2J ∼ 0.1J and the strong antiferromagnetism in a half-
filled Hubbard model, the bimagnon signal in the B1g channel
does not exhibit a noticeable difference between t ′h = −0.3th
and t ′h = 0.

D. Impact of pump and probe conditions

So far, we have considered only the horizontal pump polar-
ization epol = ex, which corresponds to the diagonal direction
in momentum space, due to the tilted geometry of the Betts
12A cluster (see Fig. 2). Changing epol to a tilted polarization
that corresponds to the horizontal momentum-space direction

ω
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FIG. 8. Time-resolved B1g Raman spectra with � = 4th and
A0 = 0.6 for the tilted polarization corresponding to the horizontal
momentum-space direction. The plot is drawn in the same manner as
in Fig. 3.

would result in a projection along both basis vectors. With
such a projection, the renormalization of spin exchange en-
ergy is relatively minor, as shown in Fig. 8. This is because
the horizontal momentum-space direction is less nested, and
the pump field does not help cross-gap excitations much.
Therefore, the thermalization effect is also less obvious.

While the pump profile changes the dynamics of the ul-
trafast processes discussed above, the probe profile deter-
mines only the spectral resolution in both frequency and time
domain, without changing the underlying physics. Figure 9
shows the time-resolved B1g spectra probed by different pulse
widths, σpr = 4t−1

h and σpr = 6t−1
h . The pump profile is the

(a)σpr=4th
 -1
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FIG. 9. Time-resolved B1g Raman spectra with probe pulse
width (a) σpr = 4th and (b) σpr = 6th. The pump profile is identical
to that in Fig. 3. The plots are drawn in the same manner as in Fig. 3.
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same as that in Fig. 3 (which has σpr = 2t−1
h ). Due to the un-

certainty principle, a wider probe has less time but more
energy/frequency resolutions, which is reflected already in the
equilibrium spectra. The finer frequency structure with wider
probe width in Fig. 9 shows that the bimagnon peak is a sharp,
well-defined quasiparticle. In addition, the continuum of ex-
citation above the charge gap consists of many poles, which
can be more easily resolved with a wider probe. Figure 9 also
shows that both thermalization and Floquet renormalization
happen during the pump. After the pump, a wider probe
clearly resolves the softening and broadening of the bimagnon
peak. On the other hand, albeit with a gain in frequency
resolution, a wider probe has a bad time resolution. For
example, unlike the oscillatory features observed in Fig. 9(a),
the σpr = 6t−1

h spectrum in Fig. 9(b) exhibits almost a constant
structure in time after the pump. This constant structure is
essentially the time average of that in a narrower probe.

Finally, we connect our theory results to real physical units.
For th = 350 meV in a cuprate material, the corresponding
timescale is roughly t−1

h ≈ 11.82 fs. Therefore, the duration
of the pump pulse considered here is 213 fs. The pump
frequency discussed in this section varies from 2th to 16th,
which corresponds to a photon energy between 0.7 and 5.6 eV.
For a pump amplitude A0 = 0.5, the corresponding fluence
is 0.007J/cm2 for � = 2th and 0.46J/cm2 for � = 16th.
The clear Floquet renormalization happens at the ultraviolet
end, while typical thermalization occurs at the infrared end.
Therefore, to achieve a faithful Floquet renormalization of
bimagnon as in Fig. 5(c), one should employ a near-ultraviolet
laser with a fluence less than 0.5J/cm2. To extract a well-
defined effective temperature as in Fig. 6, one could employ
a weak infrared or even terahertz pump, without much of a
requirement for the monochromaticity. In the latter case, one
should pay particular attention to the shift of Teff induced by
the finite-probe width, as mentioned in Sec. III C.

IV. CONCLUSION

In summary, we have derived the theory of time-resolved
Raman scattering and evaluated the A1g and B1g Raman

spectra on a pumped square-lattice single-band Hubbard
model. The spectra were shown to exhibit different ultrafast
processes, and each of them can become dominant under
different pump conditions. In particular, thermalization dom-
inates at small pump frequencies, and an effective temper-
ature can be extracted. In contrast, for large-frequency off-
resonance pumps, the Floquet theory successfully captures
the renormalization of effective spin exchange interaction as
manifested in the softening of the bimagnon energy. When
the pump frequency is on resonance with the Mott gap,
coherent many-body effects start to contribute. While ther-
malization still dominates at low pump fluences, many-body
scattering takes over at large pump amplitudes and results in
nonequilibrium states violating the Fermi-Dirac distribution.
Time-resolved Raman scattering thereby provides a platform
for exploring different ultrafast processes in a pump-probe
experiment. With tailored pump conditions, it also opens up
new opportunities to directly probe and engineer spin ex-
change interaction out of equilibrium. In accordance with our
theoretical predictions, detailed experimental investigations
of the pump amplitude, frequency, and polarization would
be intriguing future studies, especially for strongly correlated
systems.
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