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Unconventional pairing symmetry of interacting Dirac fermions on a π-flux lattice
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The pairing symmetry of interacting Dirac fermions on the π -flux lattice is studied with the determinant
quantum Monte Carlo and numerical linked-cluster expansion methods. The s∗- (i.e., extended s-) and d-wave
pairing symmetries, which are distinct in the conventional square lattice, are degenerate under the Landau gauge.
We demonstrate that the dominant pairing channel at strong interactions is an unconventional ds∗-wave phase
consisting of alternating stripes of s∗- and d-wave phases. A complementary mean-field analysis shows that while
the s∗- and d-wave symmetries individually have nodes in the energy spectrum, the ds∗ channel is fully gapped.
The results represent a new realization of pairing in Dirac systems, connected to the problem of chiral d-wave
pairing on the honeycomb lattice, which might be more readily accessed by cold-atom experiments.
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I. INTRODUCTION

One of the dominant themes of condensed matter physics
concerns unconventional superconductivity. Beginning with
the heavy fermions and cuprates, where antiferromagnetic in-
teractions are believed to mediate dx2−y2 -wave (for simplicity,
referred to below as d-wave) pairing [1,2], to s± order in the
iron pnictides [3,4], growing classes of materials including,
for example, Sr2RuO4, BC3, SrPtAs, MoS2, and NaxCoO2

have been suggested to host pairing states in which there
are additional broken parity, translation, time-reversal, and
rotation symmetries.

One of the most well studied of these systems is doped
graphene, where recent theoretical work has demonstrated
a chiral d-wave superconducting state [5]. The qualitative
explanation for this unconventional phase lies in the fact that
the dx2−y2 and dxy pairing symmetries belong to the same
irreducible E2g representation of the honeycomb geometry,
leading to the possibility that a complex combination might be
energetically favored. However, determining the correct low-
temperature superconducting symmetry, especially in compe-
tition with other types of spin density wave and charge density
wave order, and the presence of significant electron correlation,
requires the use of the most discerning analytic and numeric
approaches. Indeed, methods ranging from mean-field theory
[6,7] to functional renormalization group [8–11] and high-
precision numerical simulations [12–16] have been applied to
the problem.

The low-energy excitations in graphene are Dirac fermions,
which possess a linear energy dispersion and density of states.
In addition to the possibility of chiral d-wave pairing, these

features lead to a variety of further unusual phenomena [17].
Given the tremendous interest in the emergent properties of
Dirac fermions, it is natural to examine their behavior in the
absence of graphene’s sixfold rotational symmetry, and with
different dispersion relations.

In this paper, we employ two unbiased numerical methods,
the determinant quantum Monte Carlo (DQMC) [18] and the
numerical linked-cluster expansion (NLCE) [19,20], to address
this important issue by examining the pairing symmetry of the
π -flux phase square lattice, which, like graphene, also hosts
Dirac fermions. Originally proposed by Affleck and Marston to
describe the pseudogap regime of the high-Tc cuprates [21], the
π -flux phase has recently been shown to be generated sponta-
neously with dynamical fermions coupled to aZ2 gauge theory
in (2 + 1) dimensions [22]. Our key findings are the following:
(i) Our numerical results paint a consistent picture of the dom-
inant pairing symmetry, which is found to be formed by pair
creation with alternating stripes of extended s- (denoted as s∗-)
and d-wave symmetries. (ii) This mixed structure originates in
a symmetry linking the two pairing orders, and possesses a
full gap, unlike the individual pieces. (iii) Superconductivity
is most robust at intermediate values of the on-site repulsion
U . (iv) Mean-field theory confirms the basic qualitative picture
coming out of the DQMC/NLCE calculations. In the conclu-
sions we will also address the possibility of engineering such
lattices using optically trapped atomic systems.

II. MODEL AND METHOD

We consider a Hubbard Hamiltonian describing interacting
Dirac fermions in a π -flux model on a square lattice where
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FIG. 1. (a) The π -flux lattice in the Landau gauge. The solid
(dashed) lines represent positive (negative) hoppings. The ds∗-wave
pairing symmetry is schematically shown. A gauge transformation
on sites marked by the white bars shows that s∗ and d waves are
equivalent. (b) The noninteracting energy spectrum, which shows
that the system is a semimetal with two inequivalent Dirac points.
The corresponding density of state is linear for low energies and has
a Van Hove singularity at E/t = 2.

each plaquette is threaded with half a flux quantum, [23,24]
1
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where c
†
jσ and cjσ are the creation and annihilation opera-

tors, respectively, at site j with spin σ =↑ , ↓. The hopping
amplitudes between the nearest-neighbor sites l and j are
tlj = t , which we set to 1 as the unit of energy throughout our
paper, and χlj is the Peierls phase arising from the magnetic
flux χlj = 2π

�0

∫ xj

xl
A · dx with A the vector potential. In the

Landau gauge we have A = 1
2�0(0,x) and the Peierls phase

is given by χj,j+x̂ = 0, χj,j+ŷ = πjx . The resulting hopping
pattern is shown in Fig. 1(a). The specific form of χlj is gauge
dependent, allowing for different choices of the Peierls factors
(see Appendix B). In the following, results are based on the
geometry of Fig. 1(a). We have verified that results for other
gauge choices are consistent.

The lattice in Fig. 1(a) has a two-site unit cell. In
reciprocal space, with the reduced Brillouin zone (|kx | �
π/2,|ky | � π ), the Hamiltonian can be written as H0 =∑

kσ ψ
†
kσH0(k)ψkσ with ψkσ = (c1

kσ ,c2
kσ )T and H0(k) =

2t cos kxσx − 2t cos kyσz, with σx,z the Pauli matrices. The
energy spectrum is given by Ek = ±√

4t2(cos2 kx + cos2 ky).
The noninteracting system is a semimetal with two inequiva-
lent Dirac points at K1,2 = (π/2, ± π/2) as shown in Fig. 1(b).

The interacting π -flux model is solved numerically by
means of the DQMC and the NLCE methods. We also
validate our results using exact diagonalization (ED) for a
4×4 lattice (see Appendix D). In DQMC, one decouples the
on-site interaction term through the introduction of an auxiliary
Hubbard-Stratonovich field, which is integrated out stochasti-
cally. The only errors are those associated with the statistical
sampling, finite spatial lattice size, and the inverse temperature
discretization. All are well controlled in the sense that they can
be systematically reduced as needed, and further eliminated by

appropriate extrapolations. At half-filling (average density of
one fermion per site), we have access to low-temperature re-
sults, necessary to determine the pairing symmetry. Away from
half-filling and in the presence of the sign problem [25,26] in
the DQMC, we can access temperatures down to T ∼ 0.4. The
DQMC simulations are carried out on a 12×12 system, which
is large enough to have negligible finite-size effects for the
temperatures studied here (see Appendix C). Results represent
averages of 10 independent runs with 10000 sweeps each.

In the NLCE, properties in the thermodynamic limit are
expressed in terms of contributions from small clusters that
can be embedded in the lattice. The latter are obtained via
ED. We use a NLCE for the square lattice, modified to fit in
the reduced symmetry of the π -flux model, and carry out the
expansion up to the eighth order [20]. NLCE is error free in the
temperature region of convergence and can be used to gauge
systematic errors in DQMC in the common region of validity.
Here we show both the bare results and those obtained after
Euler resummation (see Appendix G).

The quantity on which we focus is the pairing
structure factor, Sα(q) = ∑

r eiq·rP α(r), where P α(rij ) =
〈�α†

i (0)�α
j (0) + �α

i (0)�α†
j (0)〉 is the equal-time pair-pair cor-

relation function. The general (time-dependent) pairing oper-
ator is defined as �α

i (τ ) = ∑
j f α

ij eτH ci↑cj↓e−τH with f α
ij =

±1 for the bond connecting i and j , depending on the pairing
symmetry α. The �ds∗ operator, which proves to be dominant
on the π -flux phase lattice, possesses d-wave phases (fij = +1
for j = i ± x̂ and fij = −1 for j = i ± ŷ) for sites on vertical
stripes of the lattice with ix odd, and s∗-wave symmetry
(fij = +1 for both j = i ± x̂ and j = i ± ŷ) for ix even. As we
will show below, this symmetry has a larger superconducting
response than more conventional singlet pairings in the s∗,
dx2−y2 , sxy , and dxy channels, and triplet pairings in px , py ,
and pxy channels [27].

Here we consider only the uniform pairing structure factor,
Sα(q = 0) and its correlated part, Sα

corr, obtained by subtracting
off the uncorrelated parts from Sα . One can also analyze the
uniform pairing susceptibility,

χα(q = 0) = 1

N

∫ β

0
dτ

∑
ij

〈
�α

i (τ )�α†
j (0)

〉
, (2)

which probes the decay of pairing correlations in the imaginary
time as well as spatial directions. As with the structure factor,
a subtraction of the uncorrelated pieces of χα can be used to
evaluate the pairing vertex [2]. Susceptibilities generally have
stronger signals in ordered phases [28]. However, they also
have larger error bars in the DQMC and are substantially more
costly to compute.

III. SUPERCONDUCTING PAIRING SYMMETRY

Spin fluctuations play an important role in pairing in Hamil-
tonians with repulsive electronic interactions, both competing
with superconductivity at half-filling and providing the pairing
glue upon doping. Unlike in the square lattice model with equal
hoppings, for which the critical interaction Uc = 0, antiferro-
magnetic (AF) order in the π -flux lattice with Dirac fermions
only develops above Uc = 5.64 ± 0.05 [29–32]. However, we
find that short-range AF correlations behave very similarly in
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FIG. 2. DQMC results for the q = 0 (uniform) sxy-wave, dxy-
wave, px-wave, py-wave, and pxy-wave pairing structure factors as
a function of temperature. Here U = 8t and the densities are: (a)
n = 1.00; (b) n = 0.95; (c) n = 0.90; (d) n = 0.85. All channels are
repulsive except for weakly attractive pxy .

the two models, suggesting that magnetic pairing mechanisms
might be equally robust in the two cases (see Appendix E).

In Fig. 2, we show the correlated part of the uniform
structure factor for several of the pairing symmetries, at various
dopings for U = 8. DQMC can access low temperatures at
half-filling, but is blocked by the sign problem in doped sys-
tems [25]. Nevertheless, the increasingly negative correlated
structure factors in the px,py,sxy,dxy modes offer compelling
evidence that these symmetries are suppressed. For the sxy and
dxy this can be understood as a consequence of the tendency
towards AF order, with parallel spin fermions on next-nearest-
neighbor (NNN) sites at odds with the presence of a singlet
pair. The pxy mode is attractive, but its value is much smaller
than s∗- and d-wave pairing (Fig. 3).

We find that s∗-, d-, and ds∗-wave pairings are an order of
magnitude larger than pxy-wave, and that ds∗-wave pairing is
dominant in all parameter regions. By symmetry, s∗-, d-wave
channels are equivalent in this model. This can be seen as
follows: The π -flux lattice under Landau gauge belongs to
the group D2h. Among the irreducible representations for the
group with kz = 0, A1g has the basis function k2

x or k2
y , which

are independent. The s∗ (d) wave is a linear combination of
the two basis functions k2

x + k2
y (k2

x − k2
y); thus they are not

necessarily equal from the point of view of the crystal sym-
metry group. However, gauge symmetry, a hidden symmetry
underlying the Hamiltonian, enforces their equivalence. This
can be directly seen by performing a transformation on the sites
marked by white bars in Fig. 1(a), ci,σ (c†i,σ ) → −ci,σ (−c

†
i,σ ),

under which the Hamiltonian remains unchanged while the
uniform s∗-wave pairing becomes d-wave (or vice versa).
This equivalence is confirmed within machine precision in the
NLCE.

As shown in Fig. 3, the ds∗-wave pairing has the largest
correlated structure factor for a range of dopings about half-
filling. Results from NLCE and DQMC are in very good
agreement and point to a saturation of Scorr at low temperatures
at zero and 5% doping (n = 0.95). However, we are limited to
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FIG. 3. The ds∗-wave, uniform d-wave, and s∗-wave pair-
ing structure factors vs temperature for U = 8t at densities n =
1.00,0.95,0.90,0.85. s∗-wave and d-wave are identical to the accu-
racy of our calculations. Symbols are from the DQMC. Thin dashed
and dotted lines are bare NLCE results for the seventh and eighth
orders, respectively. Thick solid lines are results after the Euler
resummation (see Appendix G).

relatively high temperatures at the other two doping values
shown in Fig. 3, where Scorr continues to increase as T is
lowered. We focus on n = 0.90, and plot Scorr vs temperature
for U = 4,6,8 and 12 in Fig. 4(a). At low temperature, the
structure factor quickly rises as U increases from U = 4,
reaches a maximum in the intermediate-coupling region, and
then slowly decreases. Figure 4(b) shows the susceptibilityχ vs
temperature for different interaction strengths at n = 0.90. For
large U , there is a trend for the susceptibility to rapidly increase
at low temperatures. The full ds∗-wave susceptibility shows
a clear enhancement over its uncorrelated value, implying
the pairing interaction is attractive. As in Fig. 3, the results
from NLCE match well with DQMC in Fig. 4, indicating
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FIG. 4. (a) Temperature dependence of ds∗-wave pairing struc-
ture factor at density n = 0.9 for different values of the interaction.
The inset shows the structure factor vs U at a fixed temperature
T = 0.4. A maximum is present at intermediate coupling. Symbols
and lines in the main panels are the same as in Fig. 3. (b) The ds∗-wave
pairing susceptibility as a function of the temperature at n = 0.9 for
different values of U .
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TABLE I. The character value λ of the gap matrix and Pα in
Eq. (7) for three typical pairings.

Pairing λ Pα

s∗ λ = cos ky ± | cos kx | P ∗
s (k) = 2� cos kyτx ⊗ I

d λ = − cos ky ± | cos kx | Pd (k) = −2� cos kyτx ⊗ I

ds∗ λ2 = cos k2
x + cos k2

y Pds∗ (k) = 2� cos kyτx ⊗ σz

that systematic errors are not significant at the accessible
temperatures.

Magnetic orders may compete with the superconductivity
discussed above. We can not rule out the possibility of a
magnetic ground state, however, lack of nesting, resulting in
Uc > 0 for LRAFO, and the incommensurate filling make the
magnetic order less competitive.

IV. MEAN-FIELD DESCRIPTION OF
THE SUPERCONDUCTING STATE

To study the physical properties of the possible supercon-
ducting states further, we analyze the gap function, �α =∑

i �
α
i (0) = ∑

k �T
↑ (k)Dα�↓(−k), where

Dα =
(

γ cos ky cos kx

cos kx β cos ky

)
, (3)

and �σ (k) = (cA,kσ ,cB,kσ ) and γ,β = 1(−1) for s∗(d)-wave
pairing on each site. The character values λ of the gap matrix
are shown in Table I. s∗ and d waves have nodes along the blue
lines in Fig. 5, while ds∗ wave is fully gapped.

A mean-field analysis of the superconducting spectrum
provides a qualitative check on the DQMC and NLCE
results reported above. The nonlocal pairing channels can
not be decoupled from the on-site Hubbard term. However,
at large U , the low-energy physics can be captured within
the t−J model [33]. The single-occupancy restriction
is dealt with in an average way by the use of statistical
weighting factors teff = 2δ

1+δ
t and Jeff = 4

(1+δ)2 J with

δ the doping level and the coupling constant J = 4t2

U
.

The Heisenberg coupling is expressed in terms of the
spin-singlet operator, Jeff (Si · Sj − 1

4ninj ) = −Jeffh
†
ij hij

with h
†
ij = 1√

2
(c†i↑c

†
j↓ − c

†
i↓c

†
j↑), with i and j near neighbors.
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FIG. 5. The lower-energy dispersion within the mean-field theory
near the Fermi energy for s∗ wave (or d wave) (a) and ds∗ wave (b).
Here the parameters are μ = 0.8,� = 0.2.

The mean-field parameter is �ij = −Jeff〈hij 〉/√2. In the
basis ψk = (c1,k↑,c2,k↑,c

†
1,−k↓,c

†
2,−k↓)T , we arrive at the

mean-field Hamiltonian: HMF = ∑
k ψ

†
kHMF (k)ψk + E0

with HMF (k) = t cos kxτz ⊗ σx − t cos kyτz ⊗ σz − μ

2 τz ⊗
I + 2� cos kxτx ⊗ σx + Pα(k) and a constant term
E0 = 4N �2

Jeff
. The ground state is then obtained by minimizing

the free energy with respect to the order parameter � and
doping δ, which yields two self-consistent equations. After
a numerical self-consistent iteration, we find that the order
parameter � of the ds∗-wave pairing has larger values for the
low doping levels, implying it is dominating in the ground
state.

It is also straightforward to obtain the energy disper-
sion. We plot the bands near the Fermi energy in Fig. 5.
The s∗- or d-wave pairing states are seen to have nodes,
while the ds∗-wave state is fully gapped. A qualitative
argument for the dominance of ds∗ pairing is the fol-
lowing: As emphasized by Scalapino [2], the presence
of a self-consistent solution of the gap equation �k =
−∑

k′ �kk′(�k′/2Ek′) tanh(Ek′/2T ), where Ek is the super-
conducting quasiparticle dispersion, for repulsive interactions
�kk′ necessitates a change in sign of �k , and hence the presence
of nodes. However, nodes reduce the overall energy lowering
due to gap formation in the superconducting states. As a
consequence, a symmetry, which enables a nontrivial self-
consistent solution, while leaving the gap everywhere large, is
energetically preferred.

V. CONCLUSIONS

Pairing in the Hubbard model on a π -flux lattice was
studied using exact/large-scale numerical methods. The s∗- and
d-wave symmetries, which are distinct in the most commonly
studied square lattice, are equivalent under the Landau gauge.
Both DQMC and NLCE indicate that the dominating pairing
channel at strong interactions is an unconventional ds∗ wave,
for which the relative signs of the pairing amplitudes alternate
between d-wave and s∗-wave patterns on adjacent stripes of
the lattice. Within a mean-field analysis, the s∗- or d-wave
channels can be shown individually to have nodes while the
ds∗ channel is fully gapped. The results represent a profound
extension of studies of interacting Dirac fermions in graphene
by eliminating the specific symmetries of the honeycomb
lattice. The DQMC studies reported here cannot access the
Van Hove singularity at quarter-filling (n = 0.5), where the
instability to a chiral d-wave state is especially prominent in
graphene [5]. However, ED simulations on small lattices show
a sign that the gapless s∗ or d channel may dominate there,
which warrants further studies.

Finally, we discuss how this phase might be accessed by
state-of-the-art cold-atom experiments [34,35]. It is by now
well established that Raman-assisted tunneling, and other
methods, can be used to create effective magnetic fields on op-
tical lattices [34–41], as well as more complex (non-Abelian)
artificial gauge fields [42]. The hybridization pattern of Fig. 1
corresponds to alternating ±π magnetic flux on adjacent verti-
cal stripes of the lattice, in precisely the geometry of Ref. [39],
which achieved φ = ±π/2 flux, similarly alternating along the
x̂ direction. As discussed there, changing the wavelength of the
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FIG. 6. Six of the nine the pairing symmetries available when the
down spin fermion is created on a 3×3 lattice about the location of
the up spin fermion at the center. On-site s wave, where the down
spin fermion is created at the same point as the up spin fermion, is
not shown, nor are py and pyx , which are just 90◦ rotations of the px

and pxy symmetries illustrated in the two right-hand panels.

Raman lasers, or the angle between them, allows for generally
tunable φ. The pattern proposed here has already been realized
for bosons [43]. Recent advances in high-resolution control
of the confining potential, resulting in flat regions [44], can
mitigate issues related to density inhomogeneity. These could,
then, provide a precise and well-controlled realization of the
unconventional ds∗ pairing symmetry described here.
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APPENDIX A: CONTEXT OF PAIRING SYMMETRY

In early studies of the Hubbard Hamiltonian on a square
lattice with uniform hopping (no flux), the amplitudes of
the pairing responses of different symmetries were com-
pared [1]. Figure 6 shows the real-space arrangements of
the wave function of the down spin fermion around the up
spin fermion. These correspond to momentum space pair
creation operators,

�
α†
k =

∑
k

fk(α) c
†
k↑c

†
−k↓, (A1)

+ + +
+

++

+

+
++

-
-- -

(a) (b)

FIG. 7. The π -flux lattice under other gauges. The corresponding
ds∗-wave pairing symmetry is schematically shown. The lattice and
the pairing symmetry is transformed from the one under Landau gauge
[see Fig. 1(a) in the main text] by a gauge transformation ci,σ (c†i,σ ) →
−ci,σ (−c

†
i,σ ) on the sites marked by blue crosses.

where α distinguishes the different symmetries,

fk(s) = 1 fk(s∗) = cos kx + cos ky

fk(px) = sin kx fk(dx2−y2 ) = cos kx − cos ky

fk(py) = sin ky fk(dxy) = sin kxsin ky (A2)

fk(sxy) = cos kxcos ky fk(pxy) = sin (kx + ky)

fk(pyx) = sin (kx − ky).

The π -flux lattice we consider here, which breaks transla-
tional symmetry in the x̂ direction, allows for more complex
symmetries, including the ds∗ arrangement of Fig. 1 of the
main text. As illustrated there, the ds∗ symmetry alternates the
dx2−y2 and s∗ patterns of Fig. 6 as one moves between the ±π

flux plaquettes.

APPENDIX B: GAUGE SYMMETRY

The π -flux lattice can be realized with different choices of
the hopping, i.e., with different gauges, as shown in Fig. 7. The
hopping pattern is gauge dependent, but so are the phases of the
ds∗ hopping. Two of the alternate choices are shown in Fig. 7.
In Fig. 7(a), the vector potential A = − 1

2�0(y,0) is chosen. As
a check on our algorithm, we performed simulations of these
transformed systems, and verified that all results are consistent
with those in the main text.

APPENDIX C: FINITE-SIZE EFFECTS

In the main text, all DQMC results were obtained on a
12×12 lattice. In Fig. 8, we show some results on 10×10
lattice to assess finite-size effects. The absolute values of
the differences between the two sizes are of order 10−3. We
conclude finite-size effects at the temperatures considered here
are small. This fact is also implied by the agreement between
the NLCE calculations shown in the main text, which represent
the thermodynamic limit, yet match the DQMC results well.

We also note that on the 10×10 lattice, the Dirac points,
which are located at (π/2, ± π/2), are not captured by the
discrete momenta. As a consequence, the noninteracting band
structure is not degenerate as is the case on 12×12 lattice. (In
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FIG. 8. The correlated pairing structure factors for two different
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absolute difference for the densities n = 1.00,0.95,0.90,0.85 at U =
8 is of order 10−3, which is comparable to the statistical error bars
(the corresponding axis is marked by the red arrow).

one dimension, at U = 0, the ground-state energy at half-filling
of lattices of size 4n and 4n + 2 approach the thermodynamic
limit from opposite directions owing to the presence/absence
of k points at the Fermi surface). Thus the agreement between
the 10×10 and 12×12 lattices is an even more strict validation
that finite-size effects are under good control. In general, for
Hubbard Hamiltonians without any threading flux, a good
rule of thumb [45] is that shell effects associated with the
discrete momentum grid tend to be noticeable only for U/t � 2
on lattices of the sites studied here. Above this value, the
interaction sufficiently smears the finite momentum grid to
eliminate size effects.

APPENDIX D: EXACT DIAGONALIZATION
BENCHMARKS

To benchmark our DQMC simulations, we compare the
DQMC results with those from ED on small sizes. As shown
in Fig. 9, the finite-temperature DQMC values for the pair
structure factors of all the symmetries precisely approach ED
values at zero temperature.
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FIG. 9. The DQMC and ED results on 4×4 lattice for n = 1 and
U = 4. The finite-temperature DQMC values tend to those of ED at
zero temperature.
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results are extrapolated to the continuous imaginary time limit using
two separate simulations with �τ = 1
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12 .

APPENDIX E: EFFECT OF FLUX ON LOCAL
MAGNETIC CORRELATIONS

Figure 10 displays the local moment m2 and NN spin-
spin correlation function. m2 is the zero separation (l = 0)
value of C(l) = 〈 1

2 (nj+l↑ − nj+l↓) 1
2 (nj↑ − nj↓)〉 and reflects the

degree of local charge fluctuations (double occupancy). C(l)
is rotationally invariant and in our simulations we average
over all three directions to provide an improved estimator in
DQMC simulations. As shown in Fig. 10(a), m2 increases as
U is increased. Although the two cases φ = 0 and φ = ±π ,
have nearly the same m2 at high temperatures, this agreement
breaks down at T/t � 1: Dirac fermions have smaller local
moments at low temperatures compared to fermions with
quadratic dispersion. For the NN spin correlation, at high
temperatures the π -flux phase has bigger spin correlations,
but there is a crossover so that at low T the φ = 0 lattice has
larger C1 = C[l = (1,0)].

APPENDIX F: DIVERGENCE OF THE DS∗-WAVE
PAIRING SUSCEPTIBILITY

At the superconducting transition temperature, the pairing
susceptibility is expected to be divergent. Figure 11 plots 1/χ

as a function of the temperature at n = 0.9. The divergence
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FIG. 11. (a) The inverse of the ds∗-wave pairing susceptibility as
a function of the temperature at n = 0.9 for different values of U .
(b) The inverse of the ds∗-wave pairing susceptibility divided by the
local uncorrelated susceptibility at r = 0.

155146-6



UNCONVENTIONAL PAIRING SYMMETRY OF … PHYSICAL REVIEW B 97, 155146 (2018)

of χ , especially at small U , is not completely compelling.
However, as U increases, the curves bend downward with
growing slope and show an increasing tendency to cross zero
at finite temperatures. To compare values of the susceptibilities
for different U on a more equal footing, we divide the ds∗-wave
pairing susceptibility by the local uncorrelated susceptibility
at r = 0. The scaled susceptibility dives more rapidly. Due
to the small density at the Fermi surface for the situation we
considered, it is expected that superconductivity may happen
at low temperature, which is beyond the current capabilities of
the DQMC and NLCE methods.

APPENDIX G: NLCE RESUMMATION

Similar to the Pade approximations widely used in high-
temperature series expansions, in the NLCE, one can take
advantage of numerical resummation techniques, such as the

Euler or Wynn methods [20,46], to extend the region of
convergence to lower temperatures. Here we use the Euler
resummation for the last five terms in the series. In this method,
the original sum is replaced by

S1 + S2 + S3 +
4∑

l=0

(−1)l

2l+1
�lu4, (G1)

where Sn is the nth term in the series, un = (−1)nSn, and � is
defined as the forward differencing operator

�0un = un,

�1un = un+1 − un,

�2un = un+2 − 2un+1 + un, (G2)

�3un = un+3 − 3un+2 + 3un+1 − un,
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