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Influence of magnetism and correlation on the spectral properties of doped Mott insulators
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Unraveling the nature of the doping-induced transition between a Mott insulator and a weakly correlated metal
is crucial to understanding novel emergent phases in strongly correlated materials. For this purpose, we study the
evolution of spectral properties upon doping Mott insulating states by utilizing the cluster perturbation theory on
the Hubbard and t-J -like models. Specifically, a quasifree dispersion crossing the Fermi level develops with small
doping, and it eventually evolves into the most dominant feature at high doping levels. Although this dispersion
is related to the free-electron hopping, our study shows that this spectral feature is, in fact, influenced inherently
by both electron-electron correlation and spin-exchange interaction: the correlation destroys coherence, while the
coupling between spin and mobile charge restores it in the photoemission spectrum. Due to the persistent impact
of correlations and spin physics, the onset of gaps or the high-energy anomaly in the spectral functions can be
expected in doped Mott insulators.
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I. INTRODUCTION

One central question in condensed-matter physics is the
origin of high-temperature superconductivity discovered about
30 years ago in copper oxides. Due to the combinatorially
large degrees of freedom intrinsic in this quantum many-body
problem, a microscopic first-principles study is impractical [1].
On the other hand, it is believed that the underlying physics
can be understood in terms of a minimal two-dimensional (2D)
Hubbard model [2]. In the limit of strong Hubbard repulsion,
its low-energy physics can be further simplified into that of the
t-J model with a perturbative projection of double occupan-
cies. Unlike the undoped (or half-filled) limit, the physics of
collective excitations and emergent quasiparticles upon doping
Mott insulators remains an open question for both models.
Advancing the knowledge of how their spectral features evolve
with doping is significant to understand intriguing emergent
phenomena that can be found in strongly correlated materials.

In order to show the complexity of this problem in more
detail, let us first concentrate on the spectral properties of
the undoped limit of the Hubbard model [see Fig. 1(a)]. In
this limit, the ground state of the Hubbard model is (Mott)
insulating in the presence of strong on-site Coulomb repul-
sion. The charge carriers are localized, with the valence and
conduction bands separated by the so-called Mott gap [see
Fig. 1(a)]. Moreover, this ground state exhibits long-range
antiferromagnetism arising from strong correlation effects [3].
The elementary excitations (magnons) lie exclusively in the
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spin channel and are of a collective nature. Consequently,
the single-particle dynamics visible in the spectral function
displays a dominance of spin physics. This includes the lower-
binding-energy spin polaron [4–10], with the charge solely
moving by coupling to magnons, and the higher-binding-
energy intrasublattice hopping mostly stemming from the
so-called three-site terms [11–14] [see Fig. 1(a)].

This situation changes drastically when additional charge
carriers are introduced: the long-range antiferromagnetic order
diminishes at a few percent doping, and other competing phases
such as stripe/charge order and d-wave superconductivity
could emerge [2]. While simulating these broken-symmetry
states in the thermodynamic limit is a challenge for advanced
numerical calculations [15], on a finite cluster a ground state
lacking a broken symmetry can be realized [16]. It turns out
that the Hubbard spectral function in this case appears, at first
glance, to be relatively simple: except for the spectral weight
located well below the Fermi level and close to the � point,
the dominant spectral feature below the Mott gap follows a
cosinelike dispersion like that of a tight-binding model with
a renormalized bandwidth. This quasifree dispersion is very
visible already at 12.5% doping, and it absolutely dominates
the spectrum at 37.5% doping [see Figs. 1(b) and 2(a)]; this
dispersion also seems to be the sole feature that crosses the
Fermi level in all of the above spectra.

As suggested by the above results, while the spin physics is
crucially important for understanding the undoped spectrum, it
does not seem to play a similar dominant role in understanding
the doped spectrum, at least for doping levels of 12.5% or
higher. Such a result stays in stark contrast to several other
recent numerical simulations of the Hubbard model. These

2469-9950/2018/97(11)/115120(9) 115120-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.97.115120&domain=pdf&date_stamp=2018-03-12
https://doi.org/10.1103/PhysRevB.97.115120


WANG, MORITZ, CHEN, DEVEREAUX, AND WOHLFELD PHYSICAL REVIEW B 97, 115120 (2018)

2.10

(a) half-filling (b) 37.5% doped 

ω
[t

]
Γ X M ΓΓ X M Γ

0

10

-5

5

-10

t*=0.66 tω

EF

UHB

LHB

ω

EF

 Mott Insulator  Metal

FIG. 1. Spectral function A(k,ω) of the Hubbard model calculated by cluster perturbation theory (CPT) on a 4 × 4 square lattice at (a) half
filling and (b) 37.5% hole doping. The spectral features at half filling are dominated by the spin physics, including the spin-polaron and three-site
term dispersions. The 37.5% doped system shows a cosinelike quasifree dispersion (the dashed gray line) described by a 2D nearest-neighbor
tight-binding model with renormalized hopping t∗ = 0.66t . The calculations adopt an on-site Hubbard interaction U = 8t and a Lorentzian
broadening � = 0.15t . The horizontal dashed lines denote the Fermi level. The insets sketch the density of states for a Mott insulator and a
metal.

finite-size calculations explore the evolution of the spin re-
sponse upon hole or electron doping, and the results indicate the
persistence of collective spin excitations until about 40% hole
doping [17–21]. Moreover, a large number of resonant inelastic
x-ray scattering (RIXS) experiments also have revealed the
persistence of a “paramagnon” dispersion in some areas of the
Brillouin zone upon both hole and electron doping the cuprates
[22–30]. More experimental evidence showing the existence
of strong spin fluctuations is the widely observed “hourglass”
structure in inelastic neutron scattering at 1/8 doping [31,32].
All these observations bring us to the two main questions of the
paper: What is the nature of the dominant quasifree dispersion
feature in the doped Hubbard spectral function? Could it be
intrinsically influenced by the spin physics?

In this work, we intend to answer the above questions
by investigating in detail the origin and evolution of the
quasifree dispersion feature upon doping the Hubbard model.
The focused regime of our study contains optimal doping at
about 12.5% and extends up to about 37.5% doping, above
which the collective spin excitations are no longer very visible
in the Hubbard model. Naturally, related studies were partially
performed already in the 1990s [33–37] and 2000s [2,38,39]
and also in a few very recent contributions [40–43]. Neverthe-
less, we believe that recent progress in numerical techniques
combined with a detailed analysis of the obtained results can
give new insight into this problem. In particular, the recent
success in calculating the spectral functions of the t-J model
using cluster perturbation theory (CPT) [14,40], the method

FIG. 2. Spectral function A(k,ω) calculated by CPT at 12.5% (left), 25% (middle), and 37.5% (right) hole doping for (a1)–(a3) the Hubbard
model, (b1)–(b3) the t-J model, and (c1)–(c3) the normalized t-J -3s model. Spin exchange J = 4t2/U = 0.5t is adopted for the t-J and
t-J -3s models. The horizontal dashed lines denote the Fermi level EF .
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designed for studying the Hubbard spectral function [14,44–
51], enables a reliable comparison between the Hubbard and
t-J models at the same stage. Since understanding the t-J
spectra is far simpler than in the case of the Hubbard model, an
intuitive explanation of the various spectral features observed
in the Hubbard model is then made possible.

The rest of this paper is organized as follows. In Sec. II
we give a brief overview of the Hubbard model and the CPT
method. In Sec. III we present the numerical results showing
the onset of a quasifree dispersion upon doping the Hubbard
model and compare its spectral functions to those of the t-
J -like models. In Sec. IV we provide an interpretation of the
t-J model spectra, focusing especially on the nature of the
quasi-free dispersion. Finally, we conclude the paper in Sec. V
by summarizing our main results.

II. HUBBARD MODEL AND CLUSTER
PERTURBATION THEORY

To describe the strongly correlated nature of doped Mott
insulators, four-fermion interactions have to be considered
on top of the tight-binding terms. For this purpose, the 2D
Hubbard Hamiltonian is usually used as a minimal model
[52–54]:

H = −t
∑
〈i,j〉,σ

(c†jσ ciσ + H.c.) + U
∑

i

(
ni↑ − 1

2

)(
ni↓ − 1

2

)
,

(1)

where c
†
iσ (ciσ ) denotes the creation (annihilation) operator of

spin σ at site i, niσ ≡ c
†
iσ ciσ is the corresponding density oper-

ator, tij is the hopping amplitude, and U is the on-site Hubbard
repulsion strength. For the purpose of simplifying the degrees
of freedom and comparing with t-J -like spin models, here we
consider only nearest-neighbor hopping t〈ij〉 ≡ t and neglect
longer-range terms such as t ′. Thus, the carriers are equivalent
under a particle-hole transformation. Therefore, the specific
difference between electron- and hole-doped Mott insulators
is not discussed in the scope of this work. Furthermore, finite
t ′ merely changes the uncorrelated physics of the Hubbard
model, so its effect on the spectral features is relatively well
understood in our scope.

The spectral function A(k,ω) of the Hubbard model has
been calculated by various numerical methods, such as ex-
act diagonalization (ED) [1,55,56], quantum Monte Carlo
[9,39,57–59], dynamical mean-field theory [60–64], CPT
[44,46–51], and several others [65–69]. For the purpose of this
paper, we believe CPT is the most suitable method, as it can
produce zero-temperature spectra with continuous momentum
resolution. This fine energy-momentum structure then allows a
detailed characterization of various features and mechanisms.

The CPT method usually proceeds with solving the model
Hamiltonian by ED on finite-size clusters with open-boundary
conditions [70]. An approximate infinite-size lattice Green’s
function is constructed using the small-cluster results by treat-
ing intercluster hopping with a strong-coupling perturbation
theory [49,71]. The zero-temperature spectral function A(k,ω)
can then be obtained accordingly [44,46]. This method will
yield numerically exact results in both the noninteracting (U =
0) and strong-coupling (t = 0) limits. When U and t are both

finite, short-range correlations caused by strong interaction are
incorporated in finite-size clusters, and long-distance effects
are accounted for by perturbation theory, together rendering
the method adequate for intermediate coupling. Although CPT
was designed for models with local interactions, it has been
shown that this method can also correctly capture the spectral
features of t-J models with the nearest-neighbor hopping and
interactions [14]. Here we apply CPT to compute the spectral
functions based on 4 × 4 clusters.

III. HUBBARD SPECTRAL FUNCTION AND ITS
COMPARISON WITH THE t- J SPECTRUM

Figures 2(a1)–2(a3) show the spectral functions calculated
by CPT for the Hubbard model with U = 8t at three hole
dopings: 12.5%, 25%, and 37.5%. Comparing Fig. 2(a1) with
Fig. 1(a), we first note that three features of the undoped Mott
insulator are also visible in the doped system. These include
the relatively broad and largely incoherent upper Hubbard
band and the two features associated with the spin physics
at half filling [14]. The latter features are solely seen in the
high-binding energy part of A(k,ω), mostly around the � point,
with much weaker contributions around the X and M points
[see Fig. 2(a)]. Since these features are located far away from
the Fermi level and, except close to the � point, their spectral
weight never dominates and decreases with increasing doping,
we leave the understanding of their doping evolution for future
study.

On the other hand, it turns out that already at 12.5% doping
the most apparent spectral feature is the one that can be
associated with the so-called quasifree dispersion defined in
Sec. I in the context of the spectrum calculated at 37.5%
doping [see also Fig. 1(b)]. This is because already in this case,
except for in close vicinity to the � point, the dominant spectral
weight below the Mott gap is concentrated around the feature
that qualitatively shows the same (cosinelike) momentum
dependence as predicted by the noninteracting (tight-binding)
model. Naturally, there are also important differences between
such a quasifree dispersion feature and the bare tight-binding
model: the quasifree dispersion shows not only a strong
bandwidth renormalization but also a large intrinsic spectral
weight broadening. In the following section we will investigate
some of the physics behind this onset of the effective mass and
finite lifetime of the electrons in the Hubbard spectral function.

However, before discussing in detail the nature of the
quasifree dispersion, let us first consider the framework to
simplify the problem. The lowest-order t/U expansion of the
Hubbard model leads to the so-called t-J -3s model with the
Hamiltonian given byHt−J−3s = Ht−J + H3s [11–13,73–80]:

Ht−J = − t
∑
〈i,j〉,σ

(c̃†jσ c̃iσ + H.c.) + J
∑
〈i,j〉

(
Si · Sj − ñi ñj

4

)
,

H3s = − J

4

∑
〈i,j〉,〈i,j′ 〉

j	=j′ ,σ

(c̃†j′σ ñiσ̄ c̃jσ − c̃
†
j′σ c̃

†
iσ̄ c̃iσ c̃jσ̄ ), (2)

where Si · Sj = Sz
i S

z
j + 1

2 (S+
i S−

j + S−
i S+

j ), with Sz
i = (ni↑ −

ni↓)/2 and S+
i = (S−

i )† = c̃
†
i↑c̃i↓. The constrained fermionic
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FIG. 3. Spectral function A(k,ω) calculated by CPT for the t-J model at 12.5% (left), 25% (middle), and 37.5% (right) hole dopings with
(a1)–(a3) J = 0t , (b1)–(b3) J = 0.1t , and (c1)–(c3) J = t . The dashed curves show the 2D nearest-neighbor tight-binding dispersions with
a renormalized hopping t∗ = gt t , where gt is the doping-dependent Gutzwiller factor in the Gutzwiller mean-field approximation [72]. The
horizontal dashed lines denote the Fermi level.

operators acting in the Hilbert space without double occupan-
cies are defined as c̃

†
iσ = c

†
iσ (1 − niσ̄ ).

It is generally believed that the t-J -3s model describes most
of the low-energy excitations in the Hubbard model, with the
contribution of the upper Hubbard band being projected out. To
justify this argument further, we compare the spectral functions
of the Hubbard, t-J , and renormalized t-J -3s models in Fig. 2.
In Figs. 2(c1)–2(c3) the spectral weight of the t-J -3s model
is renormalized by the electron occupation nk of the Hubbard
model. Similar to the undoped case discussed in Ref. [14], the
renormalized t-J -3s spectral function displays both qualitative
and quantitative agreements with that of the Hubbard model at
the low binding energy (�4t). The only significant difference
between these two spectra is the presence of the upper Hubbard
band well above the Fermi level: this part of the spectrum by
construction cannot be captured by the t-J -3s model where
doubly occupied states are integrated out.

More strikingly, the spectral features of the t-J and Hubbard
models below the Mott gap still match qualitatively, despite
different intrinsic spectral weights due to distinct sum rules and
the omission of the three-site terms in the former model. This
agreement indicates that the nature of the quasifree dispersion
is also well captured by the t-J model upon doping. Moreover,
in both models the features associated with the spin physics
(see discussion above) occur at relatively similar energies and
momenta, indicating that, unlike for the undoped case, the
three-site terms do not play an important role already for the
12.5% doping.

IV. UNDERSTANDING THE t- J MODEL SPECTRUM

With the agreement between the main spectral features of
the Hubbard and t-J models, we now turn to the understanding
of the latter model with fewer degrees of freedom. For this
purpose, we calculate the spectral function for three different
values of spin exchange, J/t = 0, 0.1, and 1.0, at three distinct
hole-doping levels, as shown in Fig. 3 [the J = 0.5t spectra
are shown in Figs. 2(b1)–2(b3)]. The spin exchange J strongly

modifies the shape of the spectral function for all doping levels,
accounting inter alia for the bandwidth renormalization of
the quasifree dispersion discussed earlier. Moreover, even at
the J = 0 limit (below also called the “constrained fermion
model”; cf. Refs. [81–88]), the spectrum is different from the
noninteracting fermionic model [see Figs. 3(a1)–3(a3)].

In Sec. IV A, we concentrate on explaining the peculiar
spectrum obtained in the J = 0 limit, while in Sec. IV B
we discuss the impact of a finite spin exchange J . In order
to streamline the discussion, we mainly focus on the “most
intensive feature” found in the spectral functions, which,
except for in the vicinity of the � point, means looking at
the quasifree dispersion.

A. Spectral properties of the t- J model with J = 0:
Significance of correlations

To understand the spectral function of a doped system, we
focus on the lowest canonical doping of 12.5% carriers. In
this case, the spectrum of the t-J model with J = 0 is largely
incoherent, where the most intensive peaks do not tend to form
a continuous dispersion relation. Below we refer to this feature
as “semicoherence” [89], which denotes the case when the hole
cannot move as a coherent quasiparticle in momentum space,
irrespective of the existence of a well-defined quasiparticle at a
particular momentum. Moreover, there is a notable difference
between the particle removal and addition spectra: the latter
seems to be dominated by a single coherent band, although a
striking dispersionless band can be seen just above the Fermi
level. We note in passing that the latter mechanism may be the
reason for the onset of a gap at the Fermi level in the Hubbard
spectral function.

Before investigating in detail the origin of the semicoherent
spectrum, let us note that such a discontinuous dispersion of
the most intensive feature can be fitted with a renormalized
free band εk = −2t∗(cos kx + cos ky), with t∗/t 
 0.83. The
renormalization is thereby relatively weak, in contrast to the
factor gt ≡ t∗/t ∼ 0.28 predicted by a simple Gutzwiller
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FIG. 4. Cartoons illustrating the motion of a photodoped hole in the t-J model with J = 0 and a finite density of holes in the ground state:
(a) the coherent motion of a photodoped hole allowed due to the existence of ferromagnetic clusters in the ground state |G〉 of a hole-doped t-J
model, (b) the coherent motion of a photodoped hole allowed due to the existence of empty sites in the ground state |G〉 of a hole-doped t-J
model, and (c) incoherent motion of a photodoped hole along the retraceable paths (here of one lattice spacing). The photoemission spectrum
is related to the imaginary part of the Green’s function 〈ϕ3|ϕ1〉. For simplicity, the cartoons show only hole motion along a 1D path in a 2D
lattice.

mean-field picture at the same doping [72]. This mismatch can
be attributed to the invalidity of the Gutzwiller picture outside
the vicinity of the Fermi level.

At first glance, the onset of a semicoherent spectrum
can hardly be explained by existing theories. On the one
hand, since the doped holes are no longer coupled to spin
excitations when J = 0, one could ostensibly argue that only
the hopping term t of the t-J model is relevant: even though the
hopping of constrained fermions is allowed only when double
occupancies are excluded, this constraint might not affect hole
propagation in a doped system. Naively, the hopping of doped
holes in the constrained fermion model could be equivalent
to spinless fermions, which support the free motion of doped
holes. However, such a simple picture would suggest just one
unrenormalized free band in the spectral function, which is
clearly not the case here.

On the other hand, we can recall the result from the
paper by Brinkman and Rice [81], where a single hole doped
into the half-filled ground state of the constrained fermion
model is considered. When the doped hole moves around,
it “scrambles” the spin pattern of one of the (degenerate)
undoped ground states. While, naively, such scrambling should
be irrelevant when J = 0 in terms of energy, one should
note that for a coherent hole motion to take place, the spin
patterns of the initial and final states must be identical. That
is possible only when the ground state is ferromagnetic or
if the so-called Trugman paths are invoked [90]. Both cases
make very small contributions to the spectral function of the
undoped constrained fermion model [81,90,91]. Thus, unless
the undoped ground state is a fully polarized ferromagnet,
the spectrum is completely incoherent and does not support
a quasiparticle solution. However, this is not the situation we
encounter either.

Instead, the situation for the t-J model with J = 0 and finite
doping lies in between the above two extremes. More precisely,
we propose that the following three processes are crucial
in explaining the spectral function of the doped constrained
fermion model (see Fig. 4).

First, we have verified that the 12.5% hole-doped ground
state has significant ferromagnetic correlations between near-
est neighbors [92]. Such strong correlations are absent in the
undoped case and can be understood to be a consequence of
the Nagaoka theorem: a single hole doped into the constrained
fermion model on an infinite lattice fully polarizes the ground
state. Due to the existence of finite ferromagnetic clusters in
the ground state, coherent motion of the photoinduced hole
or electron becomes possible [see Fig. 4(a)], which (unlike in
the single-hole case) makes a significant contribution to the
spectral function.

Second, the empty sites in a doped ground state further
support the coherent motion of charge carriers. As shown in
Fig. 4(b), these empty sites can mitigate the scrambling of
the spin pattern by the moving photodoped holes or electrons.
Beyond the simple case of a one-dimensional (1D) chain, such
an “unscrambling” process is expected to be more efficient
in the 2D case because there are more possible paths. This
mechanism not only produces coherent motion but also reveals
the asymmetry upon particle addition and removal: as long as
the empty sites of the hole-doped state are within the third-
nearest neighbors, the photoinduced electron can move without
being hindered. In terms of energy, the coherence is determined
by the density of different states in a small range of energy.
Therefore, the particle addition, in fact, reduces the number of
configurations and thus increases the coherence, in contrast
to particle removal. This asymmetry is consistent with the
spectral function, where the most intensive feature above the
Fermi level is more coherent than that below the Fermi level.

Finally and perhaps most importantly, the photodoped hole
or electron can also move in an incoherent way, somewhat
similar to the undoped case discussed in Ref. [81]. As shown
in Fig. 4(c), for example, a photoinduced hole can move along
the retraceable paths: it first moves around by scrambling the
spin pattern of the ground state, but then it heals this pattern
by moving back along the same path to its original position.
Realizing that the moving hole couples to spin excitations
(costing zero energy in the limit of J = 0) at each step of
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FIG. 5. Energy-dependent cuts of the t-J model spectral functions at the 12.5% doping level and for three distinct values of spin exchange
J at four distinct momenta k: (a) �, (b) M , (c) X, and (d) Q. The insets show the variance σ (k) of the most intensive peak at each momentum
calculated as a function of J with �ω = 4t . The shaded blue curves denote the canonical J = 0.5 scenario.

its motion, we can understand that such a process should be
incoherent. While this incoherent process is not encountered
for either spinless or spinful free fermions, it has an important
contribution to the total photoemission spectral weight of a
doped constrained fermion model. As the retraceable paths are
dominant here, the bandwidth of such an incoherent spectrum
in two dimensions should be reduced by a factor ∝√

3/2 

0.87 [81]. Such a reduction plays a dominant role in the
observed band renormalization of t∗/t 
 0.83.

B. Spectral properties of the t- J model:
Significance of spin physics

We next discuss how the spectral function of the t-J model
changes once the spin exchange J is finite and is then increased
from the realistic value of J = 0.5t to J = 1t [see Figs. 2(b1)–
2(b3) and 3]. Like before, we discuss the lowest canonical
doping of 12.5% holes and mainly focus on the most intensive
feature in the spectrum.

It turns out that the potential quasiparticle character of the
most intensive feature strongly depends on the value of J .
While the spectrum at J = 0 exhibits a rather peculiar shape,
denoted above as semicoherence, such a spectrum is basically
lost for a finite spin-exchange energy (see Fig. 3). Moreover,
the widths of the most intensive peaks below the Fermi level in
the spectral function are reduced with increasing J , as seen in
the energy-dependent cuts at selected high-symmetry momenta
shown in Fig. 5. To examine such an impact of spin exchange,
we calculate the variance of the most intensive peak for each
k, defined as

σ (k) =
√√√√

∫ ω0(k)+�ω

ω0(k)−�ω
A(k,ω)[ω − ω0(k)]2dω∫ ω0(k)+�ω

ω0(k)−�ω
A(k,ω) dω

, (3)

where �ω = 4t and ω0 is the peak position at each momentum.
Here σ (k) gives a quantitative description of the coherence.

The insets in Fig. 5 show the variances calculated for three
different values of J at selected high-symmetry momenta.
As the spin exchange J grows, it clearly reflects the trend
of increased quasiparticle coherence [equivalently, decreased
σ (k)] in the spectral function below the Fermi level. The
opposite situation happens for the spectral functions above the
Fermi level. Thus, the finite spin exchange tends to balance the
coherence of the electron and hole spectrum.

This importance of quantum spin fluctuations can be further
confirmed by comparing the t-J and t-J z models. The latter
is achieved by turning off the quantum spin fluctuations
S+

i S−
j + S−

i S+
j in Eq. (2). Figure 6 shows the spectral function

calculated in the t-J z model with the canonical J z = 0.5t at
the same doping level. Comparing Figs. 2 and 3, the variances
of the spectra below and above the Fermi level are similar
to that of a t-J model with a much smaller J , indicating
that the existence of quantum fluctuations is crucial for the
onset of a more coherent quasiparticle in the photoemission
spectrum.

FIG. 6. Spectral function A(k,ω) calculated by CPT for the t-J z

model (i.e., the t-J model without quantum spin fluctuations) with
J z = 0.5t at 12.5% hole doping. The horizontal dashed line denotes
the Fermi level.
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FIG. 7. Cartoons illustrating another channel for the coherent
motion of a photodoped hole in the t-J model with a finite density of
holes in the ground state. This channel contributes only when J 	= 0.
The hole can move coherently as the spin-exchange process ∝J may
repair the “defects” made by the hole motion, so that a “kinetically
relaxed spin polaron” can form. The photoemission spectrum is
related to the imaginary part of the Green’s function 〈ϕ3|ϕ1〉. For
simplicity, the cartoons show only hole motion along a 1D path in a
2D lattice.

We also note that although the shape of the dispersion
relation of the most intensive feature does not seem to heavily
depend on J , its magnitude (the “bandwidth”) is substantially
enhanced with decreasing spin exchange J . This is especially
visible when looking at the spectra at the M , �, and X

points. For the latter two high-symmetry points in the Brillouin
zone the absolute value of the energy of the most intensive
feature strongly increases once J → 0 (e.g., at k = � the
most intensive spectral feature is located at around −3t for
J = 0.5t and at almost −6t for J = 0t). At the same time, the
energy of the most intensive feature at the M point only weakly
reduces with decreasing J . This change in the magnitude of
the dispersion relation as a function of J is responsible for the
observed strong reduction of the Fermi surface for J = 0.5t .

Altogether, the dependence of the spectral functions on the
spin exchange J can be rationalized in the following way. First,
the inverse photoemission spectrum becomes less coherent
for larger J since the spins of the doped photoelectrons can
separate from the added charge and lead to a substantial
incoherent response. Next, for the photoemission spectrum we
encounter a situation somewhat similar to the one observed for
the extremely well studied case of a single hole in the undoped
antiferromagnet. Indeed, as J increases, the spectrum becomes
more coherent, suggesting that the doped hole can move in a
more coherent way by coupling to the spin fluctuations (see
the cartoon in Fig. 7). Naturally, the latter case is far less
extreme than the well-known undoped one, as in the latter
situation the whole spectrum at J = 0 is almost completely
incoherent, whereas in the low-hole-doping regime for J = 0
the spectral function is semicoherent (see the previous section).
For the same reason, unlike in the undoped case, the bandwidth
is reduced with increasing J since already at J = 0 the hole
seems to be able to move in a semicoherent way.

V. CONCLUSIONS

We have studied the evolution of spectral properties of the
hole-doped Mott insulators by applying the CPT method to the

Hubbard and t-J -like models. It turns out that for all studied
doping levels, which range from 12.5% to 37.5% hole doping,
the most apparent feature below the Mott gap is a quasifree
dispersion: except for the spectral weight located well below
the Fermi level and close to the � point, the dominant spectral
feature below the Mott gap follows a tight-binding model
dispersion relation with a renormalized hopping amplitude.

The main result of this work concerns understanding the
nature of the quasifree dispersion feature. We have shown that
the observed quasifree dispersion is not as closely related to
the free-electron hopping as one would naively judge from
its appearance in the Hubbard spectra and that the onset of
“gaps” or “waterfalls” in the spectral function of the Hubbard
model can be naturally expected. We suggest that the latter ones
originate from strong electron-electron correlations present
in the system, in agreement with the recent study of lightly
doped Mott insulating iridium oxide [93]. This is due to
our numerical investigation, which shows that both electron-
electron correlation and spin-exchange interaction inherently
influence the most intensive spectral feature of the Hubbard
model.

First of all, we have shown that to understand the nature of
the quasifree dispersion, it is enough to focus on the t-J model
with fewer degrees of freedom. Rather surprisingly, at the
J = 0 limit in this intrinsically correlated model, the spectral
function is far less coherent than that with a canonical value
of J = 0.5t . In this extremely correlated regime (U → ∞
once J → 0 and hopping is finite), the most intensive peaks
only very roughly follow the weakly renormalized (e.g., by
a factor of 0.8 at 12.5% doping) free dispersion, as they do
not form a continuous band in momentum space. We have
provided an intuitive explanation of this semicoherence by
suggesting circumstances when the coherent motion of added
charge carriers can occur in the t-J model with J = 0, but
this should be regarded as an exception rather than a rule.
This means that the studied case lies somewhat in between
the known examples of completely incoherent motion of a
single hole in the undoped t-J model with J = 0 [81] and
the completely coherent motion of holes predicted in a spinless
fermion or hard-core boson model. We also note that the simple
Gutzwiller mean-field picture [72] fails to predict the observed
band renormalization.

Next, we have studied the spectral function of the t-J model
with finite spin-exchange interaction J and finite doping. The
increase in the spin exchange J leads to a more continuous
dispersion relation formed by the most intensive peaks in the
spectrum. At the same time, the impact of spin exchange J

on the coherence of single-particle excitations (observed in
the spectrum as the broadening of the most intensive peaks in
the spectral function) is opposite below and above the Fermi
level. Due to the coupling of moving holes to spin fluctuations,
a situation somewhat similar to the case of a single hole in
an undoped antiferromagnetic ground state, the spectra below
the Fermi level become more coherent with increasing J . On
the other hand, an inverse photoemission spectrum displays
a more incoherent response with increasing J , possibly due
to the fact that the spins of photoinduced electrons above
the Fermi level can separate from the added charge. In both
cases, however, the coupling to spin excitations makes the
photoinduced carriers less mobile. As a result, the bandwidth
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of the quasifree dispersion is more strongly renormalized for
a finite J than for the J = 0 case.
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