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Numerically exploring the 1D-2D dimensional crossover on spin
dynamics in the doped Hubbard model
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Using determinant quantum Monte Carlo (DQMC) simulations, we systematically study the doping dependence
of the crossover from one to two dimensions and its impact on the magnetic properties of the Hubbard model. A
square lattice of chains is used, in which the dimensionality can be tuned by varying the interchain coupling t⊥.
The dynamical spin structure factor and static quantities, such as the static spin susceptibility and nearest-neighbor
spin correlation function, are characterized in the one- and two-dimensional limits as a benchmark. When the
dimensionality is tuned between these limits, the magnetic properties, while evolving smoothly from one to
two dimensions, drastically change regardless of the doping level. This suggests that the spin excitations in the
two-dimensional Hubbard model, even in the heavily doped case, cannot be explained using the spinon picture
known from one dimension. The DQMC calculations are complemented by cluster perturbation theory studies to
form a more complete picture of how the crossover occurs as a function of doping and how doped holes impact
magnetic order.
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I. INTRODUCTION

A common feature of many strongly correlated electron
systems, such as the cuprate high-temperature supercon-
ductors, is layers of planes where most of the interesting
physics occurs. This has motivated extensive studies of
two-dimensional models. However, quasi-one-dimensional
materials whose internal crystalline structure is known to be
made of weakly coupled chains, such as SrCuO2, KCuF3,
and the organic Bechgaard salts, also exist and provide an
alternative perspective on properties such as magnetism [1–4].
Indeed, the dimensionality of the system under consideration
plays a crucial role in its behavior. At the microscopic
level, dimensionality impacts the role of interactions. In two
dimensions, electrons have a much larger number of paths to
avoid one another than in one dimension, where they have
to interact. This difference drastically modifies the physics,
as single-particle excitations can be described in terms of
Landau quasiparticles in two dimensions but not in one. For
example, on a chain, only collective spin and charge excitations
are possible, leading to spin-charge separation that has been
observed experimentally [5] and has important consequences
for the magnetic properties. Hence elucidating how the system
changes as a function of dimensionality can provide a deeper
understanding of the properties themselves.

The Hubbard model provides a simple, unified frame-
work that describes one-, two-, and quasi-one-dimensional
correlated electron systems, incorporating the effects of

electron hopping and Coulomb interactions. It can be solved
analytically in one dimension, with one of two approaches.
Because the low-energy physics of the Hubbard chain belongs
to the one-dimensional Luttinger liquid (LL) universality class
(except for the charge sector at half filling), the first approach
uses the approximate bosonization scheme to calculate the
spectrum of the model and show some of its most prominent
properties, such as the aforementioned spin-charge separation
[6,7]. Low-energy properties and asymptotic correlation func-
tions can also be evaluated. The second approach uses the
analytically exact Bethe ansatz [8], which provides a way not
only to compute the spectrum of the system, but also to evaluate
the LL parameters. Together, these two methods demonstrate
that spin-charge separation and its consequences for physical
observables are the signature of one-dimensional physics. Yet,
although the Hubbard chain can be solved exactly, obtaining
information about static and dynamical correlations still relies
strongly on numerical methods [9], and the spin dynamics of
the arbitrarily doped system has not been explored in detail
[10–12].

While the one-dimensional Hubbard model can be solved
analytically, the two-dimensional case lacks exact solutions
and is not yet fully understood due to the complexity of
the physics it describes, necessitating the use of numerical
techniques such as quantum Monte Carlo (QMC) [13–18],
exact diagonalization [19,20], cluster perturbation theory
[21,22], and dynamical mean-field theory (DMFT) [23]. These
methods have been benchmarked against one another [24].

2469-9950/2017/96(19)/195106(13) 195106-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.96.195106


Y. F. KUNG et al. PHYSICAL REVIEW B 96, 195106 (2017)

Computational studies have established that the half-filled
system is a (π/a,π/a) antiferromagnetic (AF) insulator [25]
with evidence for a Mott-insulating ground state at strong
coupling [26]. By the Mermin-Wagner theorem, long-range
order (LRO) cannot exist at finite temperatures, implying
that a gap opens and correlation functions are exponentially
damped at (π/a,π/a). However, strong AF correlations are
still present and influence physical observables even at finite
temperatures. Indeed, at (π/a,π/a), the static correlation
functions exhibit a dominant mode and the spin excitation
spectrum has strong intensity [14,27]. Hence, for simplicity,
we will use the term “LRO” when referring to cases in which
the AF correlations extend across the finite-size cluster. A
good understanding of the half-filled strongly coupled case
comes from linear spin-wave theory, because the spins are
approximately localized and the spin dynamics is dominated
by the creation of a single magnon.

When holes are doped into the system, though, the interplay
between AF order and hole delocalization complicates the
situation. Upon doping, AF LRO rapidly disappears [28]
and the doped system exhibits a large variety of phases that
compete or cooperate with one another. As a consequence, un-
derstanding the spin dynamics of the doped two-dimensional
Hubbard model remains a nontrivial task. In fact, it was only
due to recent resonant inelastic x-ray experiments on doped
cuprates, which suggested (rather surprisingly) that collective
spin excitations may persist up to high doping level in some
regions of the Brillouin zone [29–33], that this problem was
studied in greater detail [27,34].

Because the Hubbard model exhibits markedly different
behavior in one and two dimensions, examining how the
system crosses over between them provides insights into
properties such as magnetism. The crossover can be modeled
with a system of coupled chains, where an interchain coupling,
t⊥, tunes a transition from effectively decoupled chains with
confined electrons (t⊥ = 0) to a deconfinement of electrons
throughout the lattice (t⊥ = t for a two-dimensional system).
Studies of quasi-one-dimensional systems use a variety of
analytical and numerical methods to calculate single-particle
and two-particle processes. The analytical approaches gen-
erally rely on renormalization group procedures and methods
similar to the field theories used in one dimension [7], while the
numerical methods include DMFT, QMC, and the variational
cluster approximation (VCA) [35–38].

The interesting question is at which point the transition
from one- to two-dimensional character occurs. Because the
one-dimensional system is a Mott insulator with a gapped
charge sector at half filling but turns into a LL when doped,
the two cases must be studied separately. In the half-filled
system with an intermediate U value (∼3t), tuning t⊥ can
trigger a phase transition. A DMFT study has shown that,
in the paramagnetic phase and for sufficiently small U and
t⊥, a Fermi surface forms as t⊥ increases [36]. In addition,
as a consequence of nesting deviations, sufficiently strong
next-nearest-neighbor hopping can prevent spin-density waves
from opening a gap in two dimensions when U has an
intermediate value [39]. Thus, the frustrated two-dimensional
system is gapless at half filling, and a metal-insulator transition
occurs as t⊥ is increased, as shown by QMC [40]. VCA and
cluster DMFT have also studied the impact of the dimensional
crossover on Mott quantum criticality [38].

When the system is doped, it has gapless charge sectors
in both one and two dimensions. Renormalization group and
perturbative approaches show that interchain single-particle
motion is controlled by the parameter α = (Kρ + 1/Kρ −
2)/4, where Kρ is the LL parameter [41–43]. When α � 1,
t⊥ > 0 is sufficient for interchain coherent motion [44]. When
α > 1, the particles remain confined to the chains. Analytical
results suggest that the Hubbard model with finite U should
have α < 1/8 and hence interchain motion for finite t⊥ [44].
However, numerical studies demonstrate that the situation is
more complicated. A QMC study finds that electrons can be
confined for intermediate values of α smaller than 1 [45].
Another study shows that as t⊥ increases, coherent interchain
motion develops, and the spectral function evolves from a
LL form with decoupled chains and spin-charge separation
towards a Fermi-liquid-like one with two-dimensional char-
acter and well-defined quasiparticle peaks [46]. However, for
intermediate values of t⊥, LL features remain present at high
energies. Similarly, a DMFT study demonstrates that with an
intermediate U value (U = 4t), lowering the temperature can
trigger a transition from a LL to a Fermi liquid for t⊥ > 0 [36].
These numerical results show that LL features can be observed
even for finite interchain coupling.

Thus far, studies of magnetism in the dimensional crossover
regime have focused on the half-filled system. As dis-
cussed already, the half-filled two-dimensional, but not one-
dimensional, system is an AF insulator that develops LRO
at zero temperature. A question of great interest is the value
of t⊥ necessary to induce this LRO in the chain [7]. As yet
there is no definitive answer, but a renormalization group
study [47] and multiple numerical studies [48,49] of the
anisotropic Heisenberg model, as well as a QMC study of
the intermediate-U Hubbard model [35], have suggested that
any t⊥ > 0 is sufficient to recover LRO. Recently, determinant
quantum Monte Carlo (DQMC) has been used to explore the
evolution of spin and charge dynamics in the Hubbard model
[37]. However, despite these studies, the interplay between
doping and magnetism has not yet been examined in the
framework of the dimensional crossover.

The goal of this study is to shed light on the magnetism of
the strongly correlated doped Hubbard model as it transitions
from one to two dimensions. In addition to providing a means
of comparison between the doped magnetism and magnetic
excitations in one and two dimensions, the effect of the
dimensionality on the doped magnetism of the Hubbard model
is interesting in itself. Hence, the magnetic properties are
examined on a lattice of coupled chains where the interchain
coupling is varied, in order to build upon previous results in
one and two dimensions, and to elucidate magnetic properties
such as the spin dynamics that are not yet well understood. As
suggested in an earlier study [27], short-range spin correlations
can also provide insight into the effect of doping on both
magnetic order and spin excitations. These quantities are
computed via DQMC [13,14,16,50] and the maximum entropy
method (MaxEnt) of analytic continuation [51].

The paper is organized as follows. In Sec. II, the Hubbard
model is presented together with the numerical methods used
to carry out the simulations. Section III discusses the static
and dynamic spin properties in one and two dimensions as a
benchmark, before Sec. IV explores the doping dependence
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of the dimensional crossover. Finally, Sec. V summarizes the
main outcomes of this study and discusses further perspectives.

II. MODEL AND METHODS

The single-band Hubbard Hamiltonian [19,52,53] describes
strongly correlated electrons on a lattice:

H = −
∑
〈i,j〉σ

tij (c†iσ cjσ + H.c.) − μ
∑
iσ

niσ

+U
∑

i

(
ni↑ − 1

2

)(
ni↓ − 1

2

)
, (1)

where c
†
iσ (ciσ ) creates (annihilates) a particle with spin

σ on site i, and niσ = c
†
iσ ciσ is the number operator. The

nearest-neighbor hoppings along the same chain and between
chains are controlled by tij ≡ t and tij ≡ t⊥, respectively.
The longer range hoppings are all set to zero except in the
two-dimensional system, for which we may also consider
the case with a finite next-nearest-neighbor hopping tij ≡ t ′.
U is the on-site Coulomb interaction that penalizes double
occupancy, and a = 1 is the unit of length. We work with
U = 8t , so the ground state is a strongly correlated Mott
insulator in the undoped system, and measure energies in units
of t [54]. The chemical potential μ is adjusted to give the
desired doping. The model exhibits particle-hole symmetry,
and the hole-doping level can be defined as p = 1 − n, where
n is the electron density.

In this study, properties of the Hubbard model are calculated
using DQMC [13,14,16,50], a numerically exact, auxiliary-
field technique that computes observables from imaginary-
time Green’s functions as

〈Ô〉 = tr[Ôe−βH ]

tr[e−βH ]
, (2)

with the imaginary-time interval [0,β] divided into L slices
of width �τ . The Hamiltonian can be rewritten in terms of
the noninteracting and interacting pieces, and the exponential
decomposed using the Trotter approximation

e−L�τH ≈ (e−�τKe−�τV )L, (3)

where K contains quadratic terms and V is the quartic
interaction term. Terms in the expansion of order O(�τ 2)
and higher are dropped. In this study, a sufficiently small time
slice was used such that no significant �τ errors were found.

A Hubbard-Stratonovich (HS) transformation,

e−�τU (ni↑− 1
2 )(ni↓− 1

2 ) = 1

2
e−U�τ/4

∑
si,l=±1

e−�τλsi,l (ni↑−ni↓),

(4)

is used to rewrite V in quadratic form, at the cost of introducing
a new HS field si,l = ±1 at each lattice site i and time slice
l. The relation cosh (�τλ) = exp (�τU/2) defines λ. The
partition function can now be calculated as

Z =
∑

si,l=±1

det M+ det M−, (5)

FIG. 1. The doping dependence of the average fermion sign is
shown for different values of interchain coupling at β = 3/t . A 10 ×
10 system is used, such that in the 1D limit it consists of 10-site
chains. The t⊥ = 0t values are essentially hidden under the t⊥ = 0.1t

values.

where

Mσ = I + Bσ
LBσ

L−1...B
σ
1 (6)

and

B±
l = e∓�τλv(l)e−�τK, (7)

and v(l) is a diagonal matrix with si,l as the ith element.
The Monte Carlo sampling is performed over the HS field
configurations, each of which has a weight of P (s) =
det M+ det M−/Z. This is used to compute the Green’s
function, which is in turn used to compute all other quantities
via Wick’s theorem. Since all observables are calculated in
terms of imaginary time, they must be analytically continued
to real frequencies for comparison to experiments. In this
study we employ MaxEnt, which uses Bayesian statistical
inference to determine the most probable spectral density given
an imaginary-time correlator [51].

DQMC has the advantages of being numerically exact and
of accessing relatively large system sizes, but in general it
suffers from a fermion sign problem [16,55,56]. Because
the algorithm does not track the order of the operators, a
negative sign from the fermion anticommutation relations
remains undetermined and all observables must be divided
by the average fermion sign 〈fsgn〉 as

〈Ô〉 =
∑

sm,l
ÔfsgnP (s)∑

sm,l
fsgnP (s)

= 〈Ofsgn〉
〈fsgn〉 ,

fsgn = sgn(det M+ det M−). (8)

Statistical fluctuations become more significant as the average
sign decreases; hence its value controls accessible parameter
regimes.

Figure 1 systematically explores the average fermion sign
for different doping levels and interchain hoppings. At half
filling, particle-hole symmetry protects the sign such that it is
always 1. Away from half filling, however, the average sign is
suppressed exponentially as the temperature decreases and the
system size increases [55]. Despite doping, the average sign
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remains close to 1 in one dimension due to the small number of
available hopping pathways (and opportunities for ambiguities
in sign). As the interchain coupling t⊥ and dimensionality
increase, the system smoothly evolves from one to two
dimensions, where the average sign is strongly reduced
upon doping. Doped two-dimensional systems require higher
temperatures to have a nonvanishing average sign, constraining
our simulations to β = 3/t in general. Earlier studies [37,57]
have demonstrated that the results are valid despite finite
temperatures and system sizes. All DQMC calculations in this
paper are performed using periodic boundary conditions.

III. SPIN PROPERTIES IN ONE AND TWO DIMENSIONS

A. One-dimensional case

We begin with a review of the one-dimensional case, sys-
tematically studying its static and dynamic magnetic properties
for comparison to the two-dimensional case. The static spin
properties elucidate the effects of doping on magnetic order
and short-range correlations. The peak position of the static
spin susceptibility χ (q) shifts with doping as 2kF = nπ . The
peak intensity is highest at half filling, q = π , suggesting
strong AF correlations, and decreases upon doping, indicating
that the 2kF spin-density wave weakens as its mode changes
[58]. This weakening is confirmed by a decrease in the
magnitude of the spatial spin-spin correlation function 〈Si · Sj 〉
upon doping. Finite temperature destroys the quasi-LRO,
implying an exponential decay of correlations with a finite
correlation length ξ , which can be extracted from 〈Si · Sj 〉.
At half filling, ξ is in good agreement with the Bethe ansatz
[59]. The small correlation length suggests that short-range
correlations play an important role in the observed magnetic
properties.

Short-range correlations can be examined via the nearest-
neighbor (NN) spin correlation 〈S0S1〉, which shows that low
levels of hole doping reduce the local density of spins without
additionally destroying magnetic order, as is consistent with
the importance of short-range correlations upon doping. How-
ever, for higher doping levels, the NN correlation decreases
more rapidly than expected from a local static picture. Naively,
one would think that once most electrons have been removed,
hole delocalization should have a reduced impact on the
magnetic order. However, spin-charge separation complicates
the situation, as doping a hole corresponds to adding both a
holon and a spinon. They can be thought of as acting indepen-
dently (due to spin-charge separation); thus the holon would
delocalize without affecting (and destroying) the magnetic
order, explaining the behavior of the NN spin correlations
up to intermediate doping levels. However, spinons may act
like domain walls and cause additional destruction of magnetic
order. This picture would be consistent with the faster decay
of the NN spin correlations at large doping. The transition
means that the way in which doped holes destroy magnetic
order evolves as electron density decreases.

The dynamical spin structure factor, S(q,ω), provides
energy- and momentum-resolved information about magnetic
properties. Figure 2(a) shows that the half-filled system
exhibits a continuum, confirming that a spin flip decays
into independent spinons, as expected in the presence of

FIG. 2. False-color plots of the dynamical spin structure factor
are shown at (a) n = 1.0, (b) n = 0.8, and (c) n = 0.6. The solid
lines in panel (a) correspond to the upper and lower boundaries of
the two-spinon continuum. Calculations are performed on a 48-site
Hubbard chain with U = 8t and β = 15/t to access the expected
low-temperature behavior.

spin-charge separation [60]. The spectral intensity is well
described by the two-spinon continuum computed from the
Bethe ansatz for the Heisenberg model (solid lines), with
spectral weight concentrated at the lower boundary due to
suppression of itinerancy effects and dominant spin excitations
at low energy due to virtual electron hopping for larger U [61].
The spectrum is broadened by finite temperature, which also
destroys quasi-LRO and opens a small gap at π . Nevertheless,
the high spectral intensity at 2kF = π confirms the presence
of strong AF correlations. In addition, despite finite-size and
finite-temperature effects, the spin velocity arising from the
LL formalism agrees well with the Bethe ansatz prediction
[6], suggesting that at half filling, the spin dynamics in the
strong-coupling limit is described well by the Bethe ansatz
solution of the Heisenberg chain at zero temperature.

In the doped system [Figs. 2(b) and 2(c)], spectral intensity
both decreases and broadens, while the spectrum hardens
overall [11]. In addition, the damping of intensity is the
largest at π [12]. The continuum indicating the presence of
spin-charge separation still can be seen, suggesting that the
doped chain also exhibits characteristics of a LL, which is
further confirmed by the soft mode at 2kF = nπ (where n

is the electron density). This shift in 2kF away from π with
doping also explains why the spectrum becomes increasingly
gapped at k = π : It no longer corresponds to the soft mode of
the spin-density wave of the doped system. As in the half-filled
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case, the spin velocities can be extracted and are found to be
in good agreement with theoretical values [6].

The qualitative behavior of the doped spectra is very
different from that of the two-spinon continuum, which is
symmetric about 2kF . As four-spinon processes are expected
to contribute more as doping increases [12], this qualitative
observation seems to confirm that processes other than two-
spinon ones are involved in the spin dynamics and are enhanced
by doping. Moreover, as opposed to the half-filled case, they
do not seem to overlap simply with the two-spinon continuum.

In order to explain the overall hardening of the spin
excitation spectrum upon doping, naively one could study it in
terms of the local static picture. Although there is no LRO
in one dimension, the robustness and the relatively strong
intensity of the continuum at high doping levels are likely
related to strong short-range correlations [12].

B. Two-dimensional case

Extensive DQMC studies have already been performed to
characterize static and dynamic magnetic properties in two
dimensions, which we review briefly. Both the static spin
susceptibility and real-space spin-spin correlation function
provide evidence for the presence of AF order at half filling
and its destruction with doping, as expected [14].

The NN spin correlation 〈S0 · S1〉 explores the interaction
of doped carriers with the magnetic background. When t ′ = 0,
a discrepancy in 〈S0 · S1〉 from what would be expected in the
simple local static picture is observed up to intermediate hole-
doping levels. In fact, this result is not surprising, since in the
spin polaron picture [62], introducing holes into a magnetically
ordered background causes a strong reduction of magnetic
correlations that is larger than the simple reduction in magnetic
moments [63–66]. However, once the number of doped holes
exceeds 50%, the density of electrons is small enough for the
holes to delocalize without breaking AF bonds. Then hole
delocalization no longer competes with magnetic correlations
and the NN spin correlation corresponds to the local static
picture.

A distinct situation occurs once the next-nearest-neighbor
(NNN) hopping t ′ = −0.3t is switched on (note that such a
value of the NNN hopping is typically chosen so that the
Hubbard model constitutes a more realistic description of
the cuprates) [27]. On the hole-doped side, the effect of t ′
is to favor sublattice mixing, which leads to an enhanced
destruction of AF order. On the electron-doped side, finite
t ′ supports AF correlations [67], so that the local static picture
can explain the hardening of the spin excitation spectrum. The
latter, rather surprising, result strongly depends on the choice
of t ′: It can only be obtained for strong enough t ′; i.e., a negative
but much smaller value |t ′| � 0.3t would not be enough.

Figure 3 shows S(q,ω) at different doping levels, with dots
indicating the maxima of spectral intensity. Despite thermal
broadening and renormalizations from quantum effects, in
general the spin excitation spectrum exhibits the features
expected at half filling [Fig. 3(a)]. The intensity maxima
reproduce the linear spin-wave dispersion (calculated for a
nearest-neighbor Heisenberg model with J = 4t2/U = 0.5t

for U = 8t) up to a multiplicative factor. However, (π,π ) has
the strongest intensity, indicating that AF order builds up at

FIG. 3. False-color plots of the dynamical spin structure factor
S(q,ω) along high-symmetry directions are shown at (a) n = 1.0,
(b) n = 0.8, and (c) n = 0.6 electron density on a 10 × 10 cluster
with U = 8t and β = 3/t . The spectra at n = 0.9 and n = 0.7 have
also been obtained and interpolate smoothly between the spectra
shown here. The dots correspond to the maximum intensity for a
given momentum point, and the solid line at half filling is the linear
spin-wave dispersion calculated for a nearest-neighbor Heisenberg
model with J = 4t2/U = 0.5t .

half filling despite the absence of true LRO in the numerical
simulation.

As the doping level increases [Figs. 3(b) and 3(c)], the spec-
trum hardens and spectral intensity decreases. These effects are
most pronounced at (π,π ), which is affected by the destruction
of AF order. Along the direction (0,0) → (π,0), spectral
intensity remains significant even at 40% doping, compared to
that at other momentum points, similarly to the finite t ′ case
reported in Ref. [27]. Moreover, the spectrum hardens along
the (0,0) → (π,0) direction. This is a counterintuitive result
discussed in an earlier paper [27], since an overall softening
had been suggested in the literature [65,66,68]. However, a
study comparing spin susceptibilities calculated by DQMC
and the random phase approximation, which was developed for
weakly interacting systems, demonstrated that this discrepancy
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may be caused by significant correlations that persist to higher
doping levels [34].

IV. MAGNETIC PROPERTIES IN THE
DIMENSIONAL CROSSOVER

Depending on the dimensionality, the magnetic response
of the Hubbard system can be very different; e.g., the spin
dynamical structure factor shows the onset of spinon continua
in one dimension, whereas surprisingly stable S = 1 collective
spin excitations (magnons) are observed in two dimensions,
even at high doping levels. Here we present results for
the crossover from one to two dimensions and explore the
doping dependence of magnetic properties as a function
of dimensionality. Unless otherwise noted, calculations are
performed on a 10 × 10 cluster with U = 8t , β = 3/t , and
interchain coupling values t⊥/t = 0.0,0.1,0.2,0.4,0.6,0.8,1.0
(of which representative values are shown).

We note that the lattice consists of decoupled chains when
t⊥ = 0. Thus, physical properties only have spatial dependence
along the chain and are independent of the transverse direction.
In reciprocal space, the direction (0,0) → (π,0) effectively
corresponds to a single chain. Due to the transverse-direction
independence, any properties along (0,k) → (π,k) will be
identical to the those along the chain, and properties along
(k,0) → (k,π ) will be identical to those at (k,0). These
considerations should be kept in mind when interpreting the
dimensionality-dependent results.

A. Static properties

First we study how the static spin properties evolve upon
tuning t⊥. As before, the static spin susceptibility provides an
energy-integrated perspective, while the NN spin correlation
function shows how doped holes interact with the magnetic
background.

1. Static spin susceptibility

Figure 4 shows the static spin susceptibility at half filling
and 40% hole doping for different values of t⊥. For t⊥ < 0.4t ,
the susceptibility only has momentum dependence along the
chains and remains almost flat along the transverse direction.
This again indicates that the magnetic order mostly retains
one-dimensional character for small t⊥.

Figure 4(a) shows that at half filling, magnetic order is
transferred smoothly from (π,0), which corresponds to the
spin-wave mode along the chain, to (π,π ) as interchain
coupling increases. As soon as t⊥ > 0, the static susceptibility
is larger at (π,π ) than at (π,0). At large t⊥, the intensity
at (π,π ) is strongest, showing that AF order dominates and
suggesting that increasing t⊥ leads to spinon confinement
and AF LRO. Note that even without long-range magnetic
correlations, because of the sum rule, there is always a signal
in χ (q). Therefore, the static spin susceptibility shows even
stronger t⊥ dependence than what would be naively expected
from the strong dependence of the magnetic properties of the
system on t⊥. Therefore, as had been deduced from the transfer
of the spectral intensity in the spin dynamics, the system
smoothly develops AF order as the chains are increasingly
coupled.

FIG. 4. Static spin susceptibility χ (q) for different values of t⊥
at (a) half filling and (b) 40% hole doping. The magnetic order is
transferred from one to two dimensions. The crossover only occurs
for t⊥ � 0.4t because of the high temperature.

In comparison with Fig. 4(a), the AF order at 40%
doping [Fig. 4(b)] has been reduced strongly. In addition,
the susceptibility at wave vectors that dominate in both one
and two dimensions at half filling are weakened significantly
by doping. Along the (0,0) → (π,0) → (π,π ) direction, the
soft mode in the spin dynamics expected in one dimension at
q = (2kF ,0) is not observed because of the high temperature.
Nevertheless, for t⊥ � 0.2t , the static spin susceptibility
has a peak along the chain corresponding to the 2kF one-
dimensional mode. This observation clearly shows that for
small enough t⊥, the chains retain their one-dimensional
character at 40% doping.

We note that this 2kF mode is directly related to the
soft mode expected in the spin dynamics. Thus, the static
susceptibility provides us with a quantitative means of tracking
the evolution from one- to two-dimensional character in
the doped system. Indeed, as t⊥ increases above 0.4t , the
spectral intensity of the one-dimensional-like peak at (2kF ,0)
shifts smoothly toward (π,π − q), which is expected in two
dimensions for high doping.

Therefore, studying the static spin susceptibility allows us
to track more closely the evolution of the one-dimensional
properties as t⊥ is varied in the doped system. At half-filling,
low temperatures can be reached so that most physical observ-
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FIG. 5. NN spin correlation as a function of electron density n for
different values of the interchain hopping t⊥, shown both along (top
row) and perpendicular to (bottom row) the chain. Perpendicular to
the chain, the spin correlation function for t⊥ = 0.1t is shown instead
of that for t⊥ = 0t , which is identically zero. The values are very
small close to one dimension, leading to larger error bars. The solid
lines show the (1 − p2) curve predicted by the local static picture.

ables can be used to track the dimensional crossover. However,
in the doped case, the sign problem restricts simulations
to higher temperatures, making it difficult to observe one-
dimensional behavior. Thus the static susceptibility enables us
to quantify the dimensional crossover.

2. Nearest-neighbor spin correlations

As already discussed, dimensionality has a strong impact
on the way in which hole delocalization interacts with
magnetic order as a function of doping. In one dimension,
hole delocalization destroys magnetic order by reducing spin
density at low doping levels but causes a greater destruction
at high doping levels. In two dimensions, the opposite trend
has been observed. To examine how the behavior crosses over
between these two limits, the longitudinal (along the chain)
and transverse NN spin correlation functions are calculated as
a function of doping for different values of t⊥, as shown in
Fig. 5.

Although the doping trend of the longitudinal correlations
[Fig. 5 (top row)] interpolates smoothly from one to two
dimensions, the transverse correlations [Fig. 5 (bottom row)]
show an unexpected trend. After a rapid decrease to a plateau,
upon increasing doping the transverse NN spin correlation
function recovers, and its magnitude even exceeds the pre-
diction from the local static picture. This plateau suggests
a transitory regime where doped holes induce processes
that compensate the reduction of magnetic order caused
by local spin density reduction. It could be related to the
spin excitations along the transverse direction: As shown in
Fig. 7, the dispersion initially lifts up as the system is hole
doped, but does not evolve significantly upon further doping
(up to 40%).

To check whether this doping dependence is a thermal
effect, the same measurements could be performed at lower
temperatures, decreasing t⊥ to ameliorate the sign problem.
We note that it would be surprising for high temperatures
to enhance correlations above the simple local spin density

reduction curve. Thus, the doping dependence of the NN spin
correlation function is intriguing and highlights the importance
of short-range correlations in understanding the properties of
the doped system.

B. Spin dynamics: Half filling

Figure 6 shows the dynamical spin structure factor, S(q,ω),
for different values of t⊥ at half filling. The solid lines
correspond to the boundaries of the two-spinon continuum
for t⊥ = 0, and to the linear spin-wave dispersion:

ω(kx,ky) =
√

(J + J⊥)2 − [J cos(kx) + J⊥ cos(ky)]2, (9)

where J = 4t2/U and J⊥ = 4t2
⊥/U . The spectra are broad

due to the high simulation temperature, so dots indicating
the positions of the peaks in the intensity provide a guide
to the eye. We note that in principle the linear spin-wave
approximation can only work for a finite value of t⊥. In fact, we
have calculated that the linear spin-wave approximation fails
for t⊥/t < 0.1835, since the quantum fluctuations are too large
to make the linear spin-wave approximation a valid approach
(cf. Fig. 2 of Ref. [35]). However, for didactic purposes, we
decided to show the linear spin-wave results also for the case
t⊥ = 0.1t [see Fig. 6(b)].

When t⊥ = 0 [Fig. 6(a)], the system consists of 10-site
chains. At β = 3/t , the two-spinon continuum is barely
distinguishable along (0,0) → (π,0), which corresponds to
the dispersion along the chain. However, the two-spinon
continuum is clearly observed at β = 15/t (not shown),
indicating that the 10-site chain is long enough to capture one-
dimensional spin dynamics at sufficiently low temperatures.

As t⊥ increases [Figs. 6(b)–6(f)], magnetic correlations
transition from the ones known for the chain to those
known for the two-dimensional lattice. Spectral intensity
shifts from (π,0) toward (π,π ), suggesting the transition
to AF LRO that is predicted at zero temperature for small
transverse hopping. In addition, peaks in the spectral intensity
increasingly follow the linear spin-wave dispersion (up to
a multiplicative factor), suggesting that coherent spin-wave
excitations have replaced independent spinons, which have
become confined. The only exception is along the direction
(0,0) → (0,π ), where the spectral intensity does not follow the
linear spin-wave dispersion up to large values of t⊥ [35]. Since
low-energy spin excitations are present along this direction,
strong thermal fluctuations probably impede the development
of two-dimensional magnetism. This transition from one-
to two-dimensional magnetism was observed previously in
Sec. IV A in the static spin susceptibility.

For small values of t⊥, the spectrum mostly retains one-
dimensional characteristics, such as the two-spinon continuum
and weak momentum dependence along transverse directions.
This behavior is due to the simulation temperature, as high
temperatures partially wash out the increase in dimension-
ality. Indeed, coherent spin waves form between t⊥ = 0.2t

[Fig. 6(c)] and t⊥ = 0.4t [Fig. 6(d)] along certain directions.
In addition, the spectral intensity along the transverse direction
(0,0) → (0,π ) begins to disperse more strongly at t⊥ = 0.4t .

The effect of the dimensional crossover on the physical
observables depends on the energy scale, as also reported in
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FIG. 6. False-color plot of the dynamical spin structure factor, S(q,ω), along the main symmetry directions at half filling, for different
values of t⊥. In one dimension, the solid line corresponds to the two-spinon continuum; for t⊥ �= 0, it represents the linear spin-wave dispersion.
The dots indicate the maximum intensity at each momentum point (in units of π ).

experiments [3]. For example, the cuprates exhibit a spin-
wave dispersion at low energies, and a spinon continuum
at higher energies [4]. This transition temperature can be
estimated naively as Ttransition ∼ t⊥ [6]; however, the tran-
sition affects single- and two-particle interchain processes
differently [41] and is renormalized by interactions so that
the effective crossover temperature is lower [6]. Despite the
Coulomb interaction in this calculation, the naive nonin-
teracting prediction of Ttransition ∼ t⊥ = t/3 appears to hold
at β = 3/t . The temperature dependence of the transition
is confirmed by performing a simulation at β = 5/t for
t⊥ = 0.2t . As expected, spectral intensity at (π,π ) is en-
hanced and the positions of the peak intensity track the
linear spin-wave dispersion more closely at β = 5/t than
at β = 3/t . At the energy scales probed here, this crossover
occurs smoothly. These observations agree well with previous
studies [35].

C. Spin dynamics: Doping and dimensionality

In one dimension, the spin excitation spectrum hardens
upon doping and develops a soft mode at 2kF . In two
dimensions, the spectrum exhibits an overall hardening but
with a relatively persistent intensity along the axes in reciprocal
space. In order to study the effect of dimensionality on the
doping dependence of the spin excitation spectra, Fig. 7 shows
the dynamical spin structure factor for different doping levels
and interchain coupling strengths.

In one dimension, due to high temperature, the soft
mode at 2kF is not seen even though 20% and 40% hole
doping correspond to 2kF = nπ = π

5 and 2π
5 , respectively.

However, when the temperature is decreased to β = 15/t

(not shown), the soft mode is observed, suggesting again that

one-dimensional physics is present on a 10-site doped chain
even when obscured by high temperatures. In fact, as discussed
below, the 2kF mode is seen in the static spin susceptibility
even at β = 3/t .

The temperature has the same effect on the crossover in the
doped system as in the half-filled case, with the transition
between one- and two-dimensional magnetism occurring
between t⊥ = 0.2t and t⊥ = 0.4t . Indeed, for t⊥ < 0.4t ,
the energy scales of the spectra are almost unaffected and
the momentum dependence along transverse directions of
reciprocal space remains small. Generally, the dimensional
crossover occurs smoothly in the spin dynamics, independent
of the doping level, with the spectra transitioning gradually
from the continuum in one dimension to showing more
coherent spin excitations in two dimensions. This suggests
that the nature of the spin excitations gradually changes from
spinon-like behavior at small t⊥ to a magnon-like response at
large t⊥. We will explore specific aspects of the crossover in
greater detail in the following sections.

1. Transverse dispersion

Along the transverse direction, (0,0) → (0,π ), finite t⊥
causes the dispersion to lift up upon doping and the spectral
intensity to spread more. Doping the chains enhances the
spin excitations and hence their two-dimensional character
(they are dispersionless in one dimension but disperse in
two dimensions). The effect of doping on the dimensionality
dependence is clearly seen in Fig. 7. At half filling, the
spectral intensity peaks show a weak dispersion away from
the linear spin-wave dispersion up to large values of t⊥, but
at high doping levels, spectral hardening is more sensitive to
dimensionality, even for fairly small t⊥.
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FIG. 7. False-color plot of the dynamical spin structure factor S(q,ω) along the main symmetry directions, for different doping levels and
values of the interchain coupling, t⊥. At half filling in one dimension, the solid line corresponds to the two-spinon continuum; for t⊥ �= 0, it
represents the linear spin-wave dispersion. The dots indicate the maximum intensity for each momentum point, which is given in units of π .

A simple local picture offers insights into the enhanced
dispersion upon doping. Once holes are doped, the t-J three-
site term, in addition to the Heisenberg term, contributes to the
spin dispersion. In the transverse direction, these two terms
depend differently upon t⊥. For the Heisenberg exchange, the
magnetic coupling involves a virtual hopping between nearest
neighbors only, so J⊥ = 4t2

⊥/U and is suppressed for small
t⊥. On the other hand, there are three possible channels for
the three-site term, which involves a virtual hopping between
the nearest and next-nearest neighbors [27]. In one of the
channels, the coupling between spins depends linearly on t⊥:
J 3-site

⊥ = 4t t⊥/U . Thus, at half filling, the spin exchange scales
as t2

⊥ and is reduced, while in the doped case it scales as t⊥.
This linear dependence may explain the enhancement of the
spin dispersion along (0,0) → (0,π ).

The evolution of the peak intensity position of the dynam-
ical spin structure factor at (0,π ) as a function of t⊥ is shown
in Fig. 8(a) for different doping levels. Near half filling, the
evolution is closer to t2

⊥. At high doping levels, the dependence
becomes more linear even though it is obscured by variations
from thermal broadening, which increases the variability of
the peak position. Nevertheless, a clear transition occurs in the
t⊥ dependence between the half-filled and the doped cases.

At half filling, for small t⊥, the energy scale of transverse
spin excitations is too small compared to the temperature to
observe a dispersion along (0,0) → (0,π ). However, once
holes are doped, the contribution of the three-site term

induces higher-energy excitations that are more easily probed
at high temperatures, showing the importance of the term
in understanding the physics of doped systems. It also
suggests that doping the system makes the crossover of the
low-energy part of the spin excitation spectrum occur at a
smaller interchain coupling value. Thus, an anisotropic lattice
allows us to disentangle different processes and separate their
contributions.

2. Momentum-dependent crossover and persistent spin excitations

The evolution of the spin dynamics at (π,π ) and (π,0) can
be compared at half filling and at 40% hole doping [Fig. 8(b)].
In the half-filled case, once coherent spin excitations are recov-
ered for t⊥ � 0.4t , their energy scales can be described with a
linear spin-wave dispersion. At (π,π ), AF order sets the energy
scale, which has no significant t⊥ dependence and remains
nearly gapless. At (π,0), the spectrum hardens according to
the linear spin-wave dispersion: ω(π,0) = 2

√
JJ⊥ ∼ t⊥.

Although linear spin-wave theory can predict the half-filled
behavior, it does not describe the 40% hole-doped system. As
at half filling, the energy scale of the (π,π ) spin excitations
has only a small t⊥ dependence. In one dimension, (π,π )
is equivalent to (π,0) and the hardening of the spectrum
at (π,π ) thus corresponds to the hardening of the spectrum
of the chain upon doping. It is remarkable that despite the
very different natures of the spin excitations in one and two
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FIG. 8. Energy of the spin excitations at different momenta as a
function of t⊥ for different doping levels. Panel (a) focuses on the
detailed doping dependence at k = (0,π ), while panel (b) compares
the evolution of the energy of spin excitations at k = (π,0) and k =
(π,π ) at two different doping levels.

dimensions, the energy scale of this point remains the same as
interchain coupling is increased. On the other hand, the (π,0)
spin excitations soften as t⊥ increases. Hence, as the spinons
start to bind together, the energy cost of a spin flip along the
chain direction decreases, and the energy scale of the spectrum
smoothly interpolates from one to two dimensions. Therefore,
there is almost no crossover in the energy scale of the spin
excitations at (π,π ) while one exists at (π,0).

3. Hardening of the spectrum

In two dimensions, the spectrum has been observed to
harden upon doping, along the (0,0) → (π,0) direction. In fact,
as shown in Fig. 7, this behavior occurs for any given value
of t⊥. Moreover, the energy scale of the hardening is always
larger than that in two dimensions (ranging from ∼ 1.2t in
two dimensions to ∼ 2t in one dimension). Although the local
static picture does not fully apply, it can still shed light on
why the spectrum hardens more for t⊥ < t . For a given value
of t⊥, the energy costs of a single local spin flip in the doped
and undoped cases can be compared to determine whether
they explain the greater hardening observed for small t⊥. In
the undoped case, the Heisenberg model gives the following

energy cost for a spin flip:

�EUndoped = 4

U
(t2 + t2

⊥). (10)

When one hole is doped on the NN site of the flipped spin,
whether the doped hole is on the same chain as the flipped spin
or on its neighboring chain must be taken into account.

While the Heisenberg model only includes terms of order
t2 and t2

⊥, the three-site term includes three different channels:

�EDoped = 1

8

4

U
(7t2

⊥ + 4t t⊥ + 7t2). (11)

Thus, the local picture predicts that for sufficiently small t⊥,
�EDoped < �EUndoped, so the spectrum should soften upon
doping and harden only for large enough t⊥. Moreover, as
t⊥ gets closer to the two-dimensional limit, the spectrum
should harden more. This is clearly very different from what
is observed in Fig. 7, where the spin excitations harden less
and less upon doping as t⊥ increases.

The hardening of the spin dispersion upon doping in the
crossover regime, visible especially for small t⊥, is to a large
extent a consequence of the proximity to the “bare” 1D case.
In the latter case, the hardening of the spin excitations can for
instance be attributed to the enhancement of the four-spinon
continuum upon doping (see discussion in Sec. III A). While
the local picture may fail because of the high temperature,
and as high-energy spin excitations in the low-t⊥ regime retain
their collective one-dimensional properties, a picture of local
magnon creation does not apply. In order to examine the
prediction of the transition from a softening to a hardening of
the spin excitations, a future study could examine the small-t⊥
regime at lower temperatures, where observing a transition
would validate the local picture.

D. Comparison with cluster perturbation theory

The DQMC studies of the dimensional crossover in the spin
excitation spectrum can be complemented with cluster pertur-
bation theory (CPT) calculations. This numerical technique
combines exact diagonalization (ED) and perturbation theory,
dividing the infinite plane into smaller identical clusters that
are solved exactly using ED. Hopping between the clusters
is treated to leading order in perturbation theory. We note
that while CPT was originally designed for computing single-
particle spectral functions, the formalism has been adapted
previously to study the dynamical spin structure factor, by
replacing the single-particle operator with spin operators in
the CPT equation [69]. In this case, the spin vertex V̂ arising
from intercluster interactions is not well defined. Since it has
been shown that the choice of matrix elements in V̂ would
be an effect secondary to the cluster size [69], here we set
V̂ = 0 to simplify the calculations. CPT is exact in the limits
of strong and weak coupling as the number of Brillouin zone
sites L → ∞. Unlike DQMC, it is generally performed at
zero temperature, thus avoiding finite-temperature effects. It
also complements DQMC with its fine momentum resolution.
However, because the ED solver works in the canonical
ensemble, dopings are limited to discrete levels, as opposed to
the continuous doping evolution accessible to DQMC, which
works in the grand-canonical ensemble. In this section, the
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FIG. 9. False-color plot of the dynamical spin structure factor S(q,ω) computed by CPT along the main symmetry directions, at half filling
(left column), 16.7% (center column), and 33.3% (right column) hole doping, for different values of the transverse hopping integral t⊥, as
calculated by CPT. The first row corresponds to t⊥ = 0, the second to t⊥ = 0.4t , and the third to t⊥ = t . The color scale is the same for all
plots. At half filling, the solid line corresponds to the two-spinon continuum and the dashed line to the linear spin-wave dispersion.

CPT simulations are performed with U = 8t and t⊥/t =
0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0. Both the 12-site
C4 and 2 × 6 two-leg ladder systems are used; the results are
qualitatively the same.

Figure 9 shows the dynamical spin structure factor on
a 12-site cluster which preserves C4 symmetry (see insets)
with three different doping levels and t⊥/t = 0,0.4,1.0 for
comparison to Fig. 7. At half filling, as in the DQMC
calculation, the one-dimensional spectral intensity follows
the two-spinon continuum (solid lines). When t⊥ > 0, the
numerical calculation agrees well with the linear spin-wave
dispersion (dashed lines) throughout the Brillouin zone, again
similar to the behavior of the DQMC calculation. The only
significant discrepancy between the CPT and DQMC spin
excitation spectra occurs in the quasi-one-dimensional system
at (0,π ) (the Y point), where the dynamical spin structure factor
from CPT follows the spin-wave dispersion while that from
DQMC has spectral intensity at lower energies up to large
values of t⊥. As DQMC is performed at a significantly higher
temperature, the difference is most likely due to a thermal
effect.

When the system is doped away from half filling, the CPT
and DQMC calculations continue to agree well. Regardless of
doping level, the dimensional crossover occurs in a smooth
transition as t⊥ is varied. When the interchain hopping is
increased, the transverse dispersion ( → Y ) hardens, and
spectral weight shifts from (π,0) towards (π,π ) as two-
dimensional character is enhanced. In addition, increasing hole
doping causes the spectra to harden along the longitudinal
direction ( → X). The close agreement of results from these
two techniques suggests that they access the same physics
despite the difference in simulation temperatures.

Section IV has examined the dimensional crossover in
half-filled and doped systems using DQMC, complemented
by CPT calculations. The evolution of the doping dependence
with increasing interchain coupling has been explored system-

atically. The crossover appears to occur smoothly for all doping
levels and momentum points. By comparing the momentum
dependence of the crossover in the spin dynamics at half filling
and at 40% doping, the presence of persistent magnon-like
excitations has been confirmed. Moreover, the importance of
the three-site term in understanding spin dynamics has been
highlighted. The mechanism behind spectral hardening upon
hole doping remains unclear, however; future studies could be
performed at lower temperatures to study the applicability of
the local picture. The doping trend of the NN spin correlation
function as the system evolves from one to two dimensions
also sheds light on how doped holes interact with the magnetic
order. Finally, a comparison of spin dynamics calculated
by DQMC and CPT forms a more complete picture of the
doping-dependent dimensional crossover.

V. CONCLUSIONS

This study has systematically examined the magnetic
properties of the Hubbard model in one and two dimensions
and explored the dimensional crossover in the half-filled and
doped systems.

In one dimension, the spin dynamics of a strongly correlated
Hubbard chain has been explored for different doping levels.
To understand the role of short-range correlations in the spin
dynamics, the doping evolution of the NN spin correlation
function has also been examined. In contrast to the two-
dimensional system, doped holes appear to interact weakly
with the magnetism at low doping levels, but have an enhanced
impact at high doping levels. A simple picture of spin-charge
separation cannot explain the trend for all doping levels.

In two dimensions, the doping evolution of the spin
dynamics has been calculated and compared to an earlier study
in which NNN hopping t ′ was included [27]. At the AF wave
vector, the spin excitations almost disappear upon doping,
as (π,π ) AF order is destroyed. Along other directions, the
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spectrum hardens with a persistent intensity. The NN spin
correlation function reveals that delocalization of doped holes
destroys magnetic order in a more subtle way than predicted by
a simple local picture of AF exchange. At lower doping levels,
magnetic order is suppressed below what is expected, while at
higher doping levels, the local picture appears to apply.

The crossover of magnetism from one to two dimensions
provides a means of elucidating the processes involved in spin
dynamics. When the dimensionality is tuned between these
limits, the magnetic properties drastically change regardless
of the doping level. Crucially, this suggests that the spin
excitations in the two-dimensional doped Hubbard model
cannot be explained using the spinon picture known from one
dimension. More precisely, we note the following.

First, doping modifies the t⊥ dependence of the crossover at
low, but not high, energies. Indeed, doping enhances the spin
dispersion perpendicular to the chains, which can be under-
stood with the three-site term of the t-J model and demonstrates
its importance when studying doped systems [70]. Comparing
the evolution of spin dynamics at half filling to that at 40% hole
doping demonstrates that persistent coherent spin excitations
develop at intermediate t⊥ and smoothly interpolate to the
two-dimensional case [27]. Moreover, the sensitivity of spin
excitations to interchain coupling is momentum dependent.

Second, dimensionality also affects the way in which
persistent spin excitations harden upon doping. Indeed, the
hardening is enhanced with decreasing t⊥. The local picture
used in two dimensions to explain this hardening is adapted to
the anisotropic case. However, for small interchain coupling, it
predicts a softening of the spin excitations upon doping, and for
large interchain coupling, it predicts that the hardening should
increase with t⊥. Evidently, the local picture does not fully
account for the hardening mechanism; it may be confounded
by thermal effects. Future studies could simulate the small t⊥
part of the crossover at lower temperatures in order to search
for this transition from a softening to a hardening.

Finally, the dimensional crossover of the NN spin correla-
tion sheds light on the role of short-range correlations. Along
the chain, it smoothly evolves from the one-dimensional result
toward the two-dimensional one as t⊥ increases, highlighting
the very different nature of the interplay between doping and
magnetic order in one and two dimensions. Perpendicular to
the chain, the NN correlation function exhibits a plateau over
a large range of doping levels, suggesting that processes may
exist to compensate the local reduction of spin density by the
doped holes.

In this work, a coupling-driven dimensional crossover
approach has been used to calculate the evolution of the spin
excitation spectrum for all momentum points. An alternative
strategy would be to study a geometric dimensional crossover
tuned by increasing the number of legs in a ladder [71]. This
future work would provide an additional perspective on the
interplay between dimensionality, doping, and magnetism in
the Hubbard model.
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