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Abstract
We study the ground state properties of the Hubbard model on three-leg triangular cylinders using
large-scale density-matrix renormalization group simulations. At half-filling, we identify an
intermediate gapless spin liquid phase, which has one gapless spin mode and algebraic spin–spin
correlations but exponential decay scalar chiral–chiral correlations, between a metallic phase at
weak coupling and Mott insulating dimer phase at strong interaction. Upon light doping the
gapless spin liquid, the system exhibits power-law charge-density-wave (CDW) correlations but
short-range single-particle, spin–spin, and chiral–chiral correlations. Similar to CDW
correlations, the superconducting correlations also decay in power-law but oscillate in sign as a
function of distance, which is consistent with the striped pair-density wave. When further doping
the gapless spin liquid phase or doping the dimer order phase, another phase takes over, which has
similar CDW correlations but all other correlations decay exponentially.

Since the discovery of high-Tc superconductivity [1], the theoretical investigation of quantum materials has
attracted numerous attention. Enormous theoretical studies not only focus on elucidating the pairing
mechanism in cuprates, but also aims to explore entangled quantum states in similar correlated materials.
Beyond the description of traditional mean-field theory, these exotic states have extended our
understanding of fundamental quantum science and hold the promise for potential application in
functional materials. The pair density wave (PDW) and quantum spin liquid (QSL) are among the most
important exotic sates. Motivated by recent experimental observations [2, 3]: signatures of PDW states has
been observed via local Cooper pair tunneling and scanning tunneling microscopy in underdoped
Bi2Sr2CaCu2O8+x [4–6], as well as the dynamical inter-layer decoupling in La1.875Ba0.125CuO4 [7, 8];
promising evidences of QSLs have been revealed in triangular materials κ-(ET)2Cu2(CN)3 [9] and
EtMe3Sb[Pd(dmit)2]2 [10–14]. Both experimental advances motivate systematic investigation of these two
exotic phases.

Due to the presence of multiple competing instabilities in correlated materials, as will be detailed below,
the theoretical identification of these phases requires microscopic models and unbiased solutions. As a
straightforward simplification of quantum chemistry, the single-band Hubbard model has been one of the
central paradigms in the field of correlated materials [15]. Although with only two parameters, the Hubbard
model is widely believed to contain the essential ingredients of high-temperature superconductivity [16–18]
and other important phases in correlated materials [19–25]. Thus, the theoretical study of the PDW and
QSL phases in the Hubbard model is particularly important. Phenomenologically, PDW is a special type of
superconducting (SC) state in which Cooper pairs carry finite center-of-mass momentum and the order
parameter varies periodically in space in such a way that its spatial average vanishes [3, 26, 27]. The first
example of PDW is the Fulde–Ferrell–Larkin–Ovchinnikov state [28, 29], which arises in a conventional
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s-wave superconductor with a finite spin polarization at the Fermi surface. Despite the well-established
phenomenological theory of PDW, its microscopic models and realization are still open questions [30–35].
These include the 1D Kondo–Heisenberg model [30], the extended Hubbard–Heisenberg model on a
two-leg ladder [31], and strong coupling limit of the Holstein–Hubbard model [34, 35]. Apart from these
models with canonical interactions, PDW signatures were also observed in the t–J model with four-spin
ring exchange interaction (in a four-leg triangular cylinder) [33], the extended Hubbard model with a
staggered magnetic flux on a three-leg triangular lattice [32], and the t–J-like extension of the Kitaev model
(in a three-leg honeycomb cylinder) [36]. In addition to the above, no evidence of the PDW state was ever
found in the standard Hubbard model on systems that wider than a two-leg ladder.

On the other hand, the QSL has been the subject of considerable interest in the geometrically frustrated
triangular lattice [37, 38]. Through the substantial theoretical studies using this lattice [26, 39–53], it has
became a consensus that the half-filled Hubbard model exhibits QSL phase at intermediate interaction
strength, separating the metallic and Mott insulating phase [26, 44–47, 52–58]. However, the nature of this
QSL phase remains still under debate: distinct candidates, including the QSL with spinon Fermi surfaces
[26, 46–49, 52, 59], Z2 spin liquid [50, 51] and chiral spin liquid (CSL) that breaking time-reversal
symmetry [57, 58], have been proposed theoretically. Debates also exist in unbiased numerical simulations
obtained using the density-matrix renormalization group (DMRG) [52, 57–60], particularly between the
gapless spin liquid (in 2D) [52] and the gapped CSL (in four- and six-leg cylinders) [57, 58, 60].

A natural question which may bring these two exotic phases together is the physics of a doped QSL.
Intuitively, QSL can be viewed as an insulating phase with preformed electron pairs such that
superconductivity may immediately emerge upon light doping [18, 61–66]. This idea was supported by
recent large-scale DMRG studies, which demonstrated that nematic d-wave [67], and topological
d ± id-wave superconductivity [68], emerge from lightly-doped (time-reversal symmetric) QSL and CSL,
respectively. Specifically for the doped Hubbard model on the triangular lattice, various SC states had been
proposed [32, 69–71], however, were recently challenged by the DMRG simulation in both three- and
four-leg cylinders [72].

In this paper, we address the above questions by studying the Hubbard model on three-leg triangular
cylinders of length up to Lx = 128 using DMRG [73]. Due to both the accommodation of 2D characteristics
and the feasibility of well-controlled DMRG simulations, the three-leg cylinder is a good starting point. Our
main results are summarized in the ground state phase diagram in figure 1. At half-filling, an intermediate
time-reversal symmetric QSL phase separates the metallic phase at weak coupling U < Uc1 = 7.0 ± 0.5t and
the Mott insulating dimer phase at strong coupling U > Uc2 = 12.0 ± 0.5t. Distinct from the gapped CSL
on four- and six-leg cylinders [57, 60], we find that the QSL phase on three-leg cylinders is gapless and
preserves the time-reversal symmetry. Upon light-doping, this gapless spin liquid evolves into a state
consistent with that of the striped PDW [3]: both the SC and charge correlations decay as a power-law and
oscillate in distance. While other correlations (single-particle, spin–spin, and scalar chiral–chiral) are all
short-range, all these correlations are intertwined and mutually commensurate in terms of the wavevector.
In contrast, a charge-density-wave (CDW) phase is identified when further doping the gapless spin liquid
phase with δ� 10% or doping the dimer order phase.

1. Model and method

The single-band Hubbard model on the triangular lattice is defined by the Hamiltonian

H = −t
∑
〈ij〉σ

(̂c†i,σ ĉj,σ + h.c.) + U
∑

i

n̂i,↑n̂i,↓. (1)

Here, ĉ†iσ (̂ciσ) is the electron creation (annihilation) operator with spin-σ(σ =↑, ↓) on site i = (xi, yi),
n̂i,σ = ĉ†iσ ĉiσ is the electron number operator. t denotes the electron hopping amplitude between the
nearest-neighbor (NN) sites 〈ij〉, and U is the on-site Coulomb repulsion. The lattice geometry used in our
simulations is depicted in the inset of figure 1, with open (periodic) boundary condition along the e1(e2)
direction. We focus on three-leg triangular cylinders with width Ly = 3 and length up to Lx = 128, where Ly

and Lx are the number of sites along the e2 and e1 directions, respectively. The doped hole concentration is
defined as δ = Nh/N, where N = 3Lx is the total number of lattice sites and Nh is the number of doped
holes. We set t = 1 as an energy unit and consider 6t � U � 18t in the present study. We perform up to 69
sweeps and keep up to m = 25 000 number of states with a typical truncation error ε ∼ 5 × 10−7. Further
details of the numerical simulation are provided in the supplemental materials (https://stacks.iop.org/NJP/
23/123004/mmedia).
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Figure 1. Ground state phase diagram of the Hubbard model in equation (1) on three-leg triangular cylinders as a function of
U/t and hole doping concentration δ. The squares are data points for half-filling and the dots are data points at finite doping.
Inset: the geometry of the triangular lattice where the two arrows labeled by e1 = (1, 0) and e2 = (1/2,

√
3/2) denote the two

basis vectors. a, b and c label the three different bonds.

2. Gapless spin liquid

At half-filling, we identify three distinct phases (see figures 1 and 2) separated by two phase transitions at
Uc1 = 7.0 ± 0.5t and Uc2 = 12.0 ± 0.5t. These phases are determined by various energy gaps including the
single-particle gap Δp, charge gap Δc and spin-triplet gap Δs defined as

Δp = E N
2 +1, N

2
+ E N

2 −1, N
2
− 2E N

2 , N
2

,

Δc =
[

E N
2 +1, N

2 +1 + E N
2 −1, N

2 −1 − 2E N
2 , N

2

]
/2, (2)

Δs = E N
2 +1, N

2 −1 − E N
2 , N

2
.

Here EN↑,N↓ is the ground state energy of the system with N↑ spin-up and N↓ spin-down electrons. Our
calculations identify a metallic phase at U < Uc1 where all three gaps vanish in the thermodynamic limit,
consistent with previous studies [47, 52, 56, 57]. At large U > Uc2, the ground state of the system can be
mapped onto the spin-1/2 antiferromagnetic Heisenberg model. It has a dimerized ground state on
three-leg cylinders [74] where all three gaps are expected to be finite in the thermodynamic limit. This is
indeed consistent with our results as shown in figures 2(a)–(c) including the dimer pattern in the inset of
figure 2(c). Independently, the phase boundaries can also be determined by ndU2, with the double
occupancy nd = 1

N

∑
i〈n̂i,↑n̂i,↓〉 [47], which exhibits peak and kink at the two phase boundaries (see

figure 2(d)).
We focus on the intermediate phase among these three phases. Distinct with four- and six-leg cylinders,

this intermediate phase on three-leg cylinders is consistent with a gapless spin liquid, where both Δp and
Δc remain finite but Δs vanishes in the thermodynamic limit as shown in figures 2(a)–(c). To further
support this, we consider U = 10t as an example (deeply in the intermediate phase) and investigate the
scaling behavior.

We first calculate the spin–spin correlation

F(r) =
1

Ly

Ly∑
y=1

〈S(x0,y) · S(x0+r,y)〉, (3)

where Si is the S = 1/2 spin operator on site i and (x0, y) is the reference site with x0 ∼ Lx/4 and r is the
distance between two sites in the e1 direction. As shown in figure 3(a), it is clear that F(r) decays with a
power-law at long distances which can be well fitted by F(r) ∼ r−Ks with corresponding Luttinger exponent
Ks = 1.1(1). As a further test, a key feature of the gapless spin liquid is its finite gapless spin mode
characterized by the central charge c. It can be obtained from fitting the von Neumann entanglement
entropy, S(x) = −Tr[ρx ln ρx], through S(x) = c

6 ln[ Lx
π

sin( πx
Lx

)] + const, where ρx is the reduced density
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Figure 2. (a) Charge gap Δc, (b) single particle gap Δp, (c) spin gap Δs, and (d) double occupancy ndU2 as a function of U/t on
three-leg triangular cylinders. The star symbols are extrapolated results in the limit N →∞. Insets: (a) examples of finite-size
scaling of Δc at different U/t. (c) Dimer pattern, i.e. spin–spin correlation 〈Si · Sj〉 between NN sites 〈ij〉 at U/t = 15. The gray
shaded regions denote the phase boundaries at Uc1 and Uc2.

Figure 3. Correlation functions of the Hubbard model at half-filling with U = 10t. Data points far from the envelope are
discarded in fittings and shown in gray color. (a) Spin–spin correlation F(r) and its power-law fit f (r) ∼ r−Ks labeled by the
dashed lines. (b) von Neumann entanglement entropy S(x) where the slope of the dashed lines gives the central charge c.
(c) Single-particle correlation Gσ(r) and its exponential fit f (r) ∼ e−r/ξG labeled by the dashed lines. (d) Scalar chiral–chiral
correlation |X(r)| and its exponential fit f (r) ∼ e−r/ξχ labeled by the dashed lines.

matrix of a (quasi-) 1D subsystem with length x [75, 76]. For critical (quasi-) 1D systems, it has been
established [75, 76] that S(x) = c

6 ln[ Lx
π

sin( πx
Lx

)] + const. Examples are shown in figure 3(b) for cylinders
of length Lx = 48 and Lx = 72, the extracted central charge is c = 1.0(1) suggesting that the intermediate
phase has one gapless mode.
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Figure 4. SC correlations (a) |Φaa(r)| and (b) |Φcc(r)| where dashed lines denote fittings to a power-law function f (r) ∼ r−Ksc .
Data points far from the envelope as well as those at short distances without PDW signatures are discarded in the fitting process
and shown in gray color. The normalized functions (c) φaa(r) = (−1)rΦaa(r)/f(r) and (d) φcc(r) = (−1)rΦcc(r)/f(r) reflect the
spatial oscillation of Φaa(r) and Φcc(r), respectively.

In contrast to the spin channel, a finite single-particle gap in the intermediate phase suggests that the
single-particle correlation

Gσ(r) =
1

Ly

Ly∑
y=1

〈c†(x0,y),σc(x0+r,y),σ〉, (4)

should decay exponentially as Gσ(r) ∼ e−r/ξG with a correlation length ξG. This is indeed the case as shown
in figure 3(c), where Gσ(r) decays exponentially and the extracted correlation length is ξG = 1.1(2).

To test the possibility of time-reversal symmetry breaking, we have also calculated the scalar
chiral–chiral correlation X(r), which is defined as

X(r) =
1

Ly

Ly∑
y=1

〈χ(x0,y)χ(x0+r,y)〉. (5)

Here χi = Si · (Sj × Sk) is the scalar chiral operator, where i, j and k label clockwise vertices of a triangle. On
three-leg cylinders, we find that X(r) decays exponentially as X(r) ∼ e−r/ξχ at long distances with the
correlation length ξχ = 2.2(1). Therefore, we conclude that the intermediate gapless spin liquid phase on
three-leg cylinders preserves time-reversal symmetry, which is different from the gapped CSL on four- and
six-leg cylinders in the previous study [57].

3. Lightly doped gapless spin liquid

Upon light doping the gapless spin liquid, a state which is consistent with that of the striped PDW emerges
where the CDW and SC pair-field correlations decay spatially in a power-law at long distances. We provide
two detailed examples (U = 9t, δ = 1/18 and U = 10t, δ = 1/24) in figure 4, while the conclusion holds
for all parameter in the PDW + CDW phase of figure 1. In this paper, we have studied a sizable system with
length up to Lx = 128 to suppress the finite-size effect. As shown below, the oscillation period of SC
correlations is rather large, which results in the absence of the PDW correlation in previous study [72].

3.1. Pair density wave
To test the possibility of superconductivity, we calculate the equal-time SC pair-field correlations. As the
ground state with an even number of electrons always have total spin 0, we focus on spin-singlet SC

5
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Figure 5. (a) Charge density profile n(x) where the solid lines denote the fitting using equation (7). Data points in gray are
discarded to minimize the boundary effect. Inset is the extracted exponent Kc as a function of truncation error ε. (b) Spin–spin
correlation F(r) and the exponential fitting f (r) ∼ e−r/ξs (dashed lines). Inset: normalized correlation (−1)rF(r)/f(r).
(c) Chiral–chiral correlation |X(r)| and the exponential fitting f (r) ∼ e−r/ξχ (dashed lines). Inset: normalized correlation
(−1)rX(r)/f(r). (d) Single-particle correlation Gσ(r) and the exponential fitting f (r) ∼ e−r/ξG labeled by the dashed lines. Note
that data points far from the envelope or have large error bars are discarded in the fitting process and shown in gray color in
(b)–(d).

correlation, which is defined as

Φαβ(r) =
1

Ly

Ly∑
y=1

〈Δ†
α(x0, y)Δβ(x0 + r, y)〉. (6)

Here, Δ†
α(x, y) = 1√

2
[̂c†(x,y),↑ĉ†(x,y)+α,↓ − ĉ†(x,y),↓ĉ†(x,y)+α,↑] is spin-singlet pair creation operator living on bond

α = a, b and c (see figure 1 inset). (x0, y) is the reference site with x0 ∼ Lx/4 and r is the distance between
two bonds in the e1 direction. The spatial distribution of SC correlations Φaa(r) and Φcc(r) for the two
examples are shown in figure 4: Φ(r) exhibits clear spatial oscillation which can be well fitted by
Φ(r) ∼ f(r)φ(r) for a large region of r, where f(r) sets envelope and φ(r) determines the oscillation, as
discussed below. At long distances, the envelope function f(r) is consistent with a power-law decay
f (r) ∼ r−Ksc . The extracted exponent is Ksc = 3.6(2) for Φaa(r) and Ksc = 3.9(3) for Φcc(r), respectively. We
have also calculated the spin-triplet SC correlations, which however are much weaker than the spin-singlet
SC correlations.

The spatial oscillation of the SC correlations Φ(r) is characterized by the normalized function
φ(r) = (−1)rΦ(r)/f(r) as mentioned above. Examples of φaa(r) and φcc(r) are shown in figures 4(c) and (d),
both of which oscillate periodically in real space and can be well fitted by φ(r) ∼ sin(Qr + θ) for φaa(r)
when r� 8 and φcc(r) when r� 24. This is consistent with the striped PDW state with vanishing spatial
average of φ(r). Q = 3πδ is the corresponding PDW ordering wavevector which corresponds to the
wavelength λsc = 2/3δ, i.e. λsc = 12 for δ = 1/18 and λsc = 16 for δ = 1/24. As we will see below, our
results clearly show the relationship λsc = λs = 2λc = λχ, which is expected for the striped PDW state.
Here λs, λc and λχ are wavelengths of the spin–spin, CDW and scalar chiral–chiral correlations.

3.2. Charge density wave

To measure the charge order, we define the local rung density operator as n̂(x) =
∑Ly

y=1 n̂(x, y) and its
expectation value as n(x) = 〈n̂(x)〉. Figure 5(a) shows the charge density profile n(x) on cylinders of length
Lx = 108 at δ = 1/18 and Lx = 128 at δ = 1/24. The system forms 1/3-filled charge stripes of wavelength
λc = 1/3δ, which is the spacing between two adjacent charge stripe along the cylinder. This corresponds to
an ordering wavevector K = 6πδ = 2Q with 1/3 doped hole per CDW unit cell.

At long distances, the spatial decay of CDW correlations is dominated by a power-law with the Luttinger
exponent Kc, which can be obtained by fitting the charge density oscillations (Friedel oscillations) induced
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Table 1. Summary of the phases. Parameters, corresponding phases, exponents (Ks, Kc, Ksc), correlation lengths (ξs,
ξG, ξχ) and central charge c. Note that Kc shown in the table is determined from the Friedel oscillation, and Ksc is
extracted from SC correlation Φaa(cc)(r). The cylinder lengths and correlation lengths are in the unit of lattice
spacing.

Parameters Phase Ks ξs ξG ξχ Kc Ksc(aa) Ksc(cc) ξsc c

U = 10t, δ = 0,Lx � 72 Gapless QSL 1.1(1) — 1.1(2) 2.2(1) — — — — ∼1
U = 9t, δ = 1/18,Lx � 108 PDW + CDW — 15(1) 4.5(1) 6.2(1) 1.6(1) 3.6(2) 3.9(3) — —
U = 10t, δ = 1/24,Lx � 128 PDW + CDW — 22(1) 4.1(1) 5.5(1) 1.6(1) 3.6(2) 3.9(3) — —
U = 18t, δ = 1/18,Lx � 72 CDW — 5.9(1) 10.8(5) 5.4(2) 1.6(1) — — 8.3(1) ∼1

by the boundaries of the cylinder [77, 78]

n(x) = n0 + δn cos(K ∗ x + θ)x−Kc/2. (7)

Here n0 denotes the background electron density, δn and θ are model-dependent constants. Note that the
first CDW period (figure 5(a), in gray), which is typically different from other CDW periods due to the
boundary effect, has been excluded to minimize the boundary effect for a more reliable fitting. The
extracted exponent Kc = 1.6(1) is shown in the inset of figure 5(a). Alternatively, Kc can also be obtained
from the charge density–density correlation, which gives consistent results (see supplemental materials for
details).

3.3. Other correlations
To further characterize the PDW phase, we have also calculated other correlations including F(r), X(r) and
Gσ(r) as shown in figure 5. Contrary to CDW and SC correlations, we find that they decay exponentially at
long distances as F(r) ∼ e−r/ξs , X(r) ∼ e−r/ξχ and Gσ(r) ∼ e−r/ξG, where the corresponding correlation
lengths ξs, ξχ and ξG are given in table 1. It may be worth mentioning that while F(r) decays exponentially
at long distances, its correlation length is fairly long ξs ∼ 22(2). This can be attributed to the fact that the
lightly doped case is very close to the gapless spin liquid at half-filling, which has divergent correlation
length. Interestingly, we find that both F(r) and X(r) exhibit clear spatial oscillation as shown in the insets of
figures 5(b) and (c) with wavelengths λs and λχ that are the same as that of the SC correlation, i.e.
λs = λχ = λsc. This gives the same ordering wavevector Q as the SC correlation. These features further
support the striped PDW state in the lightly doped system.

4. Conclusion

In summary, we have studied the ground state properties of the Hubbard model on sizable three-leg
triangular cylinders. Based on our results, we conclude that the exact ground state of the system has the
following properties: (1) at half-filling, there is an intermediate gapless spin liquid phase which is
characterized by one gapless spin mode and power-law spin–spin correlation but a gap to all charge
excitations. (2) Light doping (δ � 10%) the gapless spin liquid phase can give rise to a striped PDW state
with power-law SC correlations with moderate exponent Ksc ∼ 4 and an ordering wavevector Q. (3) There
are power-law CDW correlations with an ordering wavevector K = 2Q. (4) While both spin–spin and scalar
chiral–chiral correlations are short-ranged, they are mutually commensurate with both CDW and SC
correlations with an ordering wavevector Q. It is notable that the favored forms of order, where stripe spin
density wave and SC correlations with the same ordering wavevector Q is half of the ordering wavevector
K = 2Q of the CDW, are remarkably reminiscent of those conjectured to be present in the cuprate
high-temperature superconductor [4–8]. In this paper, we primarily focus on the single-band Hubbard
mode, and observe the evidence of the power-law PDW correlation on the triangular lattice wider than the
two-leg ladder. The present results are suggestive of a possible PDW ordered state for doping the QSL on
triangular materials such as κ-(ET)2Cu2(CN)3 [9] and EtMe3Sb[Pd(dmit)2]2 [10–14].
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