
New materials are being fabricated on the nanoscale 
to have surprising performance, such as robust super-
conductivity in poorly conducting ceramics or at a thin 
interface a few atoms wide between two electrical insu-
lators — a golden age of quantum materials. Likewise, 
the tools in our arsenal have been developing at a rapid 
pace, and we now have the capacity to measure excita-
tions and dynamics on the fundamental time and length 
scales of microscopic processes with remarkable reso-
lution — a golden age of spectroscopy. Angle-resolved 
photoemission spectroscopy (ARPES), using light from 
synchrotrons or table-top lasers, can now pinpoint elec-
tron dispersions with detailed energy, spin and time 
resolution. Resonant inelastic X-ray scattering (RIXS) 
using X-rays from synchrotrons, as well as free-electron 
lasers in the near future, has revealed bosonic excita-
tions (orbitons, magnons, phonons and other collective 
modes) with increasingly detailed energy and spin reso-
lution. Moreover, the ability to time-resolve the dynam-
ics of these excitations may soon be possible. ARPES 
and RIXS, as well as other electron or optical spectros-
copies, are providing a wealth of new information about  
quantum materials.

In one femtosecond, light travels the distance of a  
human hair. In the same time period, electrons in solids  
cover a shorter distance of only a few unit cells. These are 
the natural time and length scales on which the collective 

behaviour of materials is borne, ultimately determin-
ing the functionalities of the materials that shape our 
world. The field of ultrafast materials science is provid-
ing a microscopic view of this world and has opened 
new windows into our understanding of phenomena 
such as superconductivity, magnetism and ferroelec-
tricity. The interactions and processes that govern these 
phenomena occur over timescales from femtoseconds 
to milliseconds, and length scales from nanometres to  
micrometres. The present challenge is to decipher 
how the collective motion of 1023 degrees of freedom 
gives rise to high-temperature superconductivity, 
rapid switching in ferromagnets and ferroelectrics, 
and high-capacity batteries and solar cells with high 
cyclability. From an experimental perspective, the chal-
lenge of covering such a wide range of time and energy 
scales as well as length and momentum scales has given 
birth to many of the spectroscopic tools discussed in  
this Review.

There is an urgent need for advanced theoretical and  
computational tools to understand and interpret pho-
ton spectroscopies, especially photon-in–photon-out 
scattering and time-domain pump–probe experiments.  
Developments in theory are moving at a rapid pace, 
extending many tools for equilibrium spectroscopy 
into the non-equilibrium domain. These advances are 
revealing the importance of designing tests of competing 
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theoretical scenarios, developing new numerical tech-
niques, implementing new algorithms and formulating 
a new language to describe out-of-equilibrium systems 
for which conventional equilibrium concepts fail. 
Ultimately, these developments are helping to shape the 
landscape for more predictive models of novel quan-
tum phenomena and materials. Theory, modelling and 
interpretation of spectroscopies, especially in the time 
domain, are needed to extract and therefore exploit the 
physical and chemical information encoded in the vast 
volume of experimental data covering energy, momen-
tum, spin and space–time domains across multiple 
scales. This task requires theories that provide a better 
treatment of excited-state dynamics, going beyond con-
ventional modelling in terms of ground-state properties 
(that is, modelling based solely on density functional 
theory (DFT)).

This Review sketches the landscape of theoretical 
photon-based spectroscopies and outlines advances 
in our ability to simulate excited-state properties and 
spectra. New generations of codes and algorithms for 
the spectroscopy of quantum materials are now availa-
ble, and hybrid simulations have been designed for exas-
cale computing environments. In this Review, we focus 
principally on correlated materials, with the degrees of 
freedom treated equally, both in and out of equilibrium. 
We further restrict our discussion on equilibrium spec-
troscopies to ARPES and RIXS, which have improved 
both experimentally and, more importantly for the 
purposes of this Review, theoretically in terms of our 
ability to understand and simulate the spectra for quan-
tum materials. Owing to the nascent development and 
implementation of out-of-equilibrium spectroscopic 
techniques — both experimental and theoretical — we 
also discuss the nature of the fundamental physics in the 
ultrafast regime.

Equilibrium spectroscopy theory
With the high level of control enabled by modern syn-
chrotrons, the electronic structure of a system can be 
probed with fine momentum and energy resolution, 
providing detailed information about the states and col-
lective orders in complex quantum materials. However, 
there exist significant challenges in deciphering the 
underlying physics from these measurements (Fig. 1).  

On the one hand, precise treatment of the extrinsic photon– 
probe processes requires characterization of the pho-
ton cross section, matrix elements and excited-state 
lifetimes. On the other hand, the intrinsic many-body 
nature of correlated quantum materials means that 
the relevant physics needs to be disentangled at the 
microscopic level to determine the influence of charge, 
spin, lattice and orbital degrees of freedom. Theoretical 
modelling of many-body systems and their response 
to various X-ray probes must capture both the intrin-
sic and extrinsic aspects in an efficient manner. In 
the following, we review the theoretical progress in  
photoemission spectroscopy, which provides single- 
particle information, and X-ray scattering, which 
provides information on collective excitations from 
multiple sources.

Advances in theories for angle-resolved photoemission 
spectroscopy. A theory for angle-resolved photoemis-
sion1,2 with the associated degrees of freedom — 
light polarization and energy as well as the momentum, 
energy, orbital and spin of the photoemitted electron  
— involves calculation of the photocurrent under the 
sudden approximation3,4 (equation 1).

∑I ω V A ω ε( ) = ( − ) (1)f,i f,i
2

i f

The photocurrent is generally expressed in terms of a 
convolution of matrix elements Vf,i, which describes 
the process of exciting an electron from an initial state 
i to a final state (photoelectron) f with kinetic energy 
εf. The intrinsic electron-removal spectral function 
Ai(ω − εf) (where ω is the photon energy) contains the 
single-particle information for each initial state. The 
matrix elements Vf,i encode all the extrinsic factors 
in the photoemission process, such as the momen-
tum and polarization of the incoming photon and 
the characteristics of the final state of the photoelec-
tron, while also accounting for photoelectron prop-
agation through the bulk and sample surface3,4. By 
contrast, the spectral function Ai(ω − εf) contains  
information about the electronic properties intrinsic 
to the material under investigation and is generally  
of primary interest.

In most materials in which correlation effects are neg-
ligible or can be treated perturbatively, first-principles 
approaches can accurately describe the single-particle 
spectral functions relevant to ARPES. For systems 
in the ground state, improvements in the efficiency 
of algorithms5–7 related to the GW (where G is the 
single-particle Green’s function and W is the screened 
Coulomb interaction) method8,9 for the electronic 
self-energy have enabled routine simulations of quasi-
particle band structures in a wide variety of materials, 
such as semiconductors and topological insulators10.

Methodologies within the GW paradigm that account 
for both electron–electron and electron–phonon self- 
energy corrections have also been incorporated in band 
structure calculations11–13. These corrections, in con-
junction with efficient evaluation of electron–phonon 
couplings, enable ab initio investigation of phonon- 
mediated superconductivity in the Migdal–Eliashberg 

Detector

Probe

Orbital Lattice

Pump

Extrinsic
properties

Intrinsic
propertiesCharge Spin

Fig. 1 | Theoretical evaluation of spectroscopies. The schematic illustrates the two main 
factors required for the theoretical evaluation of spectroscopies: first, treatment of the 
extrinsic measurement details that describe the light–matter interaction, and second, 
assessment of how the individual and collective degrees of freedom (including charge, spin, 
orbital and lattice) manifest in the intrinsic physical properties relevant to a specific probe.
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framework14,15 (Fig. 2a). Furthermore, generalizations 
of GW theory, in particular the GW plus cumulant 
formalism, have been actively researched with the aim 
of correctly reproducing quasiparticle renormaliza-
tion and satellite features induced by electron–boson 
coupling12,16–18.

For correlated systems, the local density approxima-
tion (LDA) plus dynamical mean-field theory (DMFT)19 
(LDA + DMFT) has been widely applied to several 
classes of materials, such as transition metal oxides 
and f-electron materials. This composite approach typ-
ically uses Wannier downfolding20 schemes to map the 
lattice problem onto a correlated single-site problem 

embedded within a dynamical Weiss field. Notably, 
LDA + DMFT has been incorporated into detailed 
mechanistic ARPES simulations within the relativistic 
Korringa–Kohn–Rostoker (KKR) multiple scattering 
(MS) framework in order to capture self-energy effects 
in the initial state21. Additionally, extensions that com-
bine the first-principles GW method with variants 
of DMFT have also been developed or proposed for 
correlated materials22.

Starting from ab initio-derived models of Wannier 
orbitals and the corresponding matrix elements, more 
sophisticated many-body methods can be adopted in 
the calculation of ARPES spectra, including exact diag-
onalization (ED)23, quantum Monte Carlo (QMC)24, 
the density matrix renormalization group (DMRG)25, 
cluster perturbation theory26, the dynamical cluster 
approximation27 and the variational cluster approxi-
mation28. These numerical approaches typically treat 
the many-body effects more precisely than Hartree–
Fock. For example, the strong correlation-induced 
‘high-energy anomaly’ in ARPES has been success-
fully characterized by ED29, the dynamical cluster 
approximation30, QMC31 and cluster perturbation 
theory32. These many-body approaches, after modi-
fications, can be extended to multiparticle scattering,  
as discussed below.

In addition to the intrinsic spectral function, a 
reliable interpretation of ARPES spectral intensities 
requires matrix-element effects21,33,34 to be taken into 
account. Among the first-principles methods currently 
available, the KKR–MS approach35,36 is well suited for 
this purpose and has been routinely adopted for inter-
preting ARPES data in a wide variety of quantum mate-
rials, such as high-temperature supercon ductors33,37 
and, more recently, topological insulators and semi-
metals38,39. A recent combined experimental and the-
oretical ARPES study on the pnictide superconductor 
Ba1−xKxFe2As2 illustrates the success of the KKR–MS 
approach40; the reported ARPES simulations exhibi-
ted good agreement with experiment in terms of the  
photon energy and polarization dependence (Fig. 2b). 
More precise treatment of light–matter interactions 
involving quantum electrodynamics has also been devel-
oped in the first-principles framework, providing an 
option for describing exotic spectral properties within an  
optical cavity41.

Theoretical approaches to resonant inelastic X-ray 
scattering. Multiparticle processes in correlated mate-
rials encode information on collective excitations, 
and this information can be revealed using various 
photon-in–photon-out X-ray scattering probes. Among 
these scattering approaches, RIXS is a rapidly develop-
ing and expanding technique that enables an under-
standing of low-energy excitations in a wide range of 
materials. The element specificity and electronic-state 
selectivity of RIXS can be tuned by changing the inci-
dent photon energy, the photon polarizations and the 
relative momentum transfer in the material, making 
it a powerful method for interrogating specific excita-
tions of interest42–44. In such a resonant process, the 
intermediate many-body state has a significant role 
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Fig. 2 | Ab initio evaluation of the electronic structure.  
a | The top part shows the structure of C6CaC6 (C in grey  
and Ca in red). The bottom part shows the single-particle 
spectral function of the phonon-driven superconducting 
bilayer C6CaC6 in the normal state. The ab initio band 
structure, calculated in the Migdal approximation with 
(solid lines) and without (dashed lines) electron–phonon 
coupling, is superimposed on the experimental spectral 
function. The spectral function exhibits clear kinks at a 
binding energy of 180 meV. b | Fermi surface cuts across 
several Brillouin zones for (Ba0.6K0.4)Fe2As2. The surface cuts 
were calculated from first principles with the local density 
approximation combined with dynamical mean-field  
theory to simulate a one-step model for angle-resolved 
photoemission spectroscopy at an energy of 75 eV.  
The black lines correspond to the experimental data. a, 
lattice constant; k, momentum. Panel a is adapted from 
reF.14, CC-BY-4.0. Panel b is adapted from reF.38, CC-BY-4.0.
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and therefore usually cannot be treated simply with 
mean-field approaches or DFT.

RIXS has proved to be an effective tool in probing the 
excitations in transition metal systems, which typically 
contain many intertwined degrees of freedom, including 
charge, spin, orbitals and phonons, in the low-energy 
range. In the study of high-temperature superconduct-
ing materials, such as cuprates, RIXS was first used 
at the Cu K-edge to detect charge excitations45,46 and 
then extended to the Cu L-edge to detect mainly spin 
excitations as well as orbitals and charge-transfer excita-
tions47–51. Spin excitations are accessible in the RIXS pro-
cess at the Cu L-edge because the spin is coupled to the 
2p core orbital and accordingly breaks the valence spin 
conservation rule. In addition, RIXS has been applied  
at the O K-edge52,53 and M-edge44 of cuprates and used in 
the study of other correlated systems; for example, RIXS 
has been used to measure spin excitations in Fe-based 
superconductors54, to explore spin and orbital degrees 
of freedom in iridates55,56 and to determine the hidden 
order in URu2Si2 (reF.57). As RIXS provides a ‘fingerprint’ 
of the electronic state of a system, it has also been used 
in the chemistry community for the study of transition 
metal complexes58,59.

The momentum-dependent RIXS cross section can 
be expressed using the Kramers–Heisenberg formula60

H
⟨ ∣ ∣ ⟩qI Ω ω ψ

E Ω i
ψ( , , ) = 1

π
Im 1

− − − 0 (2)i
G

+

and

D
H

D∣ ⟩ ∣ ⟩
′

. †∑ψ
E ω iΓ

G= e 1
− − − (3)

q r
j σ

i
j

j
j,

G i

j

where q is the momentum transfer; ωi is the incident 
photon energy; Ω is the energy transfer (Ω = ωi − ωf; 
where ωf is the energy of the emitted photon); Γ is  
the inverse core-hole lifetime; and EG and ∣ ⟩G  are the 

ground-state energy and wavefunction, respectively. 
Here, H′j represents the intermediate-state Hamiltonian, 
which contains the interactions induced by the core 
hole; D†

j is the dipole transition operator with a specific 
X-ray absorption edge; r is the electron position; σ is the 
spin; and i is the site index. In the direct RIXS process, 
an incoming photon excites a dipole transition from 
a core level to a valence level, whereas in the indirect 
RIXS process, the dipole transition occurs between a 
core level and a level much higher than the valence, and 
the Coulomb attraction from the core hole acts on the 
valence electrons (Fig. 3). For systems with strong cor-
relation effects, the Hilbert space dimension for many-
body states exponentially increases with the system size, 
making full evaluation challenging or even impossible.

One way to tackle the challenge of full evaluation is 
to develop algorithms that embed both symmetry reduc-
tion and large-scale parallel computing techniques61 and 
to evaluate the Kramers–Heisenberg formula explicitly 
using ED. In pioneering theoretical calculations for RIXS 
on 2D cuprates with the single-band62,63 and three-band64 
Hubbard model, the momentum and doping dependen-
cies of Cu K-edge RIXS were calculated. The calculated 
momentum dependence and resonant profile showed 
good agreement with experiment. For example, the RIXS 
spectrum evaluated by ED for an undoped cuprate dis-
plays a feature at 4.7 eV for zero momentum transfer, 
which corresponds to the charge-transfer energy in this 
material (Fig. 4a). The calculations for various doping 
levels demonstrated that the screening effect for the 
intermediate states is crucial for the accurate evaluation 
of RIXS spectra.

Theoretical studies have also established the con-
nection between Cu K-edge65 and L-edge RIXS66,67 and 
the corresponding dynamical charge and spin structure 
factors. Such a connection provides a cheaper alterna-
tive to evaluating the more complicated four-particle 
RIXS diagram, which can instead be approximated 
by a two-particle correlation function under certain 
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Fig. 3 | Feynman diagrams for RIXS processes and approximations. In these diagrams, the wavy lines represent photon 
propagators; the blue and black lines represent the core level and valence electron Green’s functions, respectively; and 
the red lines represent the Green’s function for electronic states in bands into which core-level electrons are excited in an 
indirect resonant inelastic X-ray scattering (RIXS) process. a | Full RIXS cross section for direct RIXS. The photon-in and 
photon-out dipole processes are indicated by the vertices; with interactions included, the cross section represents an 
irreducible four-point correlation. b | Full RIXS cross section for indirect RIXS. As the core electron is excited to a 
high-energy state, the valence electrons contribute to the cross section through an effective two-point correlation. The 
dashed lines indicate the interaction between the core hole and valence electrons. c | Charge or spin dynamical structure 
factor. ωi and ωf, energy of the incident and emitted photon, respectively ; ki and kf, momentum of the incident and emitted 
photon, respectively.
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conditions, such as using different incoming and outgo-
ing polarization combinations, specific incoming pho-
ton energies tuned to different X-ray edges and specific 
doping concentrations. Although the complicated full 
RIXS cross section can thus far be treated only diagram-
matically or calculated using ED, correlation functions 
can also be evaluated for a much finer momentum 
grid with other numerical tools, such as QMC. The 
QMC-evaluated dynamical spin and charge structure 
factor S(q,ω) captures the spin excitations across both 
electron and hole dopings66,68,69 (Fig. 4b), including the 
hardening of the paramagnon energy for electron-doped 
cuprates and the persistence of the excitation energy 
for hole-doped cuprates around (π, 0), consistent with 
measured RIXS data47–51. This consistency makes RIXS 
a complementary tool to inelastic neutron scattering for 
studying the momentum dependence of spin excitations. 
Compared with traditional approaches, RIXS requires 
much smaller sample volumes, enabling a wider range 
of materials to be investigated.

The endeavour to connect RIXS with correlation 
functions dates back to the 1990s. Fast collision approx-
imations were first used to connect RIXS with S(q,ω) 
based on the assumption that the dynamics need 
be considered only at the site of the core hole in the 

intermediate state70,71. Later on, the ultrashort core-hole 
lifetime (UCL) expansion was introduced for both indi-
rect and direct RIXS processes43,52. Under UCL, it has 
been shown that an indirect RIXS cross section can be 
reduced to the charge dynamical structure factor N(q,ω), 
whereas a direct RIXS cross section in the spin-flip chan-
nel can be reduced to the spin dynamical structure fac-
tor. In higher-order expansions, it is also possible to map 
onto bimagnons72. Although UCL is powerful in deriv-
ing effective RIXS cross sections, caution must be taken 
in using it for specific cases, as convergence of the UCL 
expansion may break down when the intermediate-state 
energy manifold is not much smaller than the inverse 
core-hole lifetime.

To test the validity of these downfolding approaches, 
the full RIXS cross section can be directly evaluated 
and compared with calculated dynamical structure 
factors on an equal footing. It was demonstrated that 
indirect RIXS is consistent with the charge dynamical 
structure factor when the screening effect does not have 
a role in the intermediate state (Fig. 3b): by neglecting 
the core-hole Coulomb attraction (represented by the 
dashed lines in Fig. 3b), the Feynman diagram for indi-
rect RIXS can be simplified to dynamical charge struc-
ture factors (Fig. 3c). Moreover, it has been shown that 
direct RIXS in the spin-flip channel can be mapped 
onto the dynamical spin structure factor on a qualita-
tive and semi-quantitative level, although the connection 
becomes less precise for doped models66, while in the 
nonspin-flip channel, the cross section can be mapped 
onto a projected dynamical charge structure factor 
only qualitatively67. The failure of the above attempts to 
simplify the description in terms of two-particle corre-
lation functions reflects the inherent complexity of the  
RIXS process.

The connection between final and initial states 
through a complicated process involving intermediate 
states means that certain dipole-forbidden excitations, 
including orbital excitations (for example, d–d excita-
tions in transition metal compounds73,74) and even 
excitations involving the lattice degree of freedom75,76, 
are active in RIXS. The simulated RIXS spectra from 
a simple spin–orbital model (Fig. 4c) were shown to be 
consistent with experimental results demonstrating 
spin–orbiton coupling in the 1D cuprate Sr2CuO3 (reF.50), 
and RIXS simulations and experiments have charac-
terized phonon modes and their interplay with the 
charge degrees of freedom in quantum materials at low  
energies77 (Fig. 4d).

Non-equilibrium spectroscopy theory
Time adds a new dimension to the study of quantum 
materials. By using this extra dimension, it is possible 
to directly access excited states and non-equilibrium 
dynamics as a means to decipher underlying equilibrium 
properties — that is, unoccupied states, certain elemen-
tary excitations and excited-state and quasiparticle life-
times. The complex nature of quantum materials often 
makes these properties difficult to measure directly or to 
distinguish easily, especially at low energies, using estab-
lished equilibrium techniques. Remaining close to equi-
librium, within or just beyond the regime applicable to 
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linear-response theory, while accessing this new dimen-
sion of time requires low pump fluences, which can be 
observed at the very beginning or end of a typical pump 
envelope (see Quasi-equilibrium in Fig. 5).

By pushing a quantum material out of equilibrium, 
novel states of matter can be stabilized, such as those that 
have no equilibrium analogue or may not be easily acces-
sible by standard approaches of chemical substitution. 
These exotic states may emerge from the light–matter 
interactions through precise engineering of new terms 
or modification of existing terms in the many-body 
Hamiltonian. By modulating or manipulating the eigen-
state manifold, exotic states can be stabilized through 
strong pump fields or pump fields that persist over a 
sufficient period of time to enable the formation and 
resolution of distinguishing characteristics and features 
of these states (see Transient states in Fig. 5).

The complex interplay between multiple degrees of 
freedom in quantum materials often gives rise to coop-
erating and competing phases. A single phase typically 
becomes dominant for a given set of equilibrium param-
eters, such as chemical composition, temperature or pres-
sure. However, pump–probe time-domain techniques can 
be used to alter the sometimes delicate balance between 
intertwined orders and to manipulate the physics enough 
to reveal an exotic phase with subleading character 
that would otherwise not be expressed in equilibrium. 

Although the non-equilibrium virtual states that mediate 
such a process may be short-lived owing to the transient 
nature of the pump field, the exotic phase and its signa-
tures may be metastable or at the very least detectable 
for some time in the immediate aftermath of the pump 
pulse or in its tail (see Metastable excitations in Fig. 5).

The non-equilibrium numerical techniques on 
which this Review focuses fall broadly into methods 
based on either the wavefunction and density matrix 
or a Green’s function formalism. The former includes 
Krylov-subspace ED78, variational ED79, dynamical 
DMRG and matrix-product state methods80. Each, in 
some form, tracks the evolution of a time-dependent 
state, treated as either a vector or density matrix in 
Hilbert space, and measures all observables based on 
that state. The exponential increase in Hilbert space 
dimension with system size typically limits these stud-
ies to small clusters. By contrast, methods based on 
Green’s functions describe the evolution of observ-
ables expanded on a generalized Green’s function. 
Time-dependent Hartree–Fock, DMFT81 and clus-
ter perturbation theory82 techniques belong to this 
class. These methods are less restricted by the Hilbert 
space dimension but cannot describe all many-body  
observables with similar accuracy.

Although there are currently only a few, the number of 
ab initio simulations of single-particle spectral functions 
and photoemission spectra in quantum materials out of 
equilibrium is expected to grow in the near future owing 
to recent methods development83–86. The methods and 
attempts at simulation include, but are not restricted to, 
a non-equilibrium generalization of the GW approach83 
and a first-principles lesser Green’s-function approach85. 
Real-time, time-dependent, DFT-based approaches 
within the adiabatic local spin-density approxima-
tion87 have also been adopted for simulating spin- and 
time-resolved ARPES88.

Characterizing hidden equilibrium properties. Taking 
advantage of additional information afforded in the 
time domain, non-equilibrium approaches can dis-
entangle and reveal otherwise obscured parameters of 
quantum materials. For example, time-domain tech-
niques have been used widely to determine quasipar-
ticle relaxation and infer lifetimes in the recombination 
of particle–hole pairs from semiconductors and super-
conductors89–92. A theoretical understanding of these 
phenomena has come from a microscopic description 
that treats electron– phonon and electron–electron 
interactions93–96, tying the relaxation and lifetimes to 
the effective scattering rates due to these interactions. 
More recently, a combination of two time-domain spec-
troscopic techniques has made strides in elucidating the  
electron–phonon coupling strength in FeSe (reF.97); 
the extracted deformation potential is consistent with  
theoretical predictions from an equilibrium DFT + DMFT 
approach98. Deciphering material-specific properties 
using these time-domain methods can help to test and 
correct intuitive models and theoretical descriptions.

Basic physical properties in condensed-matter sys-
tems are usually directly tied to the electronic struc-
ture. With unique developments and improvements in 

Pump pulse

Excitation

Time

Transient statesQuasi-equilibrium Metastable excitations Quasi-equilibrium

Fig. 5 | Accessing physics out of equilibrium. Schematic illustrating a pump pulse and 
the excitation profile as a function of time. A time-resolved measurement can reveal 
distinct non-equilibrium regimes as a function of the pump–probe delay , which can in 
turn provide information about both equilibrium and transient states. For example, it is 
possible to uncover intertwined or subleading equilibrium orders or low-energy 
excitations that may be easier to resolve in the time domain, create novel states of 
matter that do not have an equilibrium analogue, manipulate metastable states and tip 
the balance between competing orders. These phenomena are approximately separated 
in time during the pump–probe process and also differ in their deviation from 
equilibrium. The insets show the single-particle spectra typical for each dynamical 
regime during the pump. The solid black lines represent the instantaneous electron and 
hole distribution, the white lines denote the equilibrium bands and the dashed lines 
denote the transient Floquet sidebands. The initial stages of the pump can be 
understood within the linear response, providing a snapshot of quasi-equilibrium 
behaviour. When the system is highly excited, a transient modification of both the 
Hamiltonian and the distribution dominates the physics. Afterwards, the system may 
access metastable states with pre-thermal excitations before ultimately returning to 
quasi-equilibrium in the final stages.
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ARPES1, the single-particle spectral functions can be 
measured with fine momentum and energy resolutions. 
However, this information is available only for the occu-
pied single-particle states with similar information about 
the unoccupied band structure not as easily accessible 
owing to the much poorer resolution and cross section 
for inverse photoemission. Non-equilibrium spectro-
scopic approaches, such as two-photon photoemission, 
seek to circumvent this problem. A fraction of electrons 
can be excited to unoccupied states above the Fermi 
energy, and subsequent photoexcitation liberates these 
electrons. This technique of two-photon photoemis-
sion has been used to elucidate the unoccupied states 
of topological insulators (from the Be2Se3 and Be2Te3 
families)99–103, which can be well captured by DFT meth-
ods. The spin textures that accompany these states can 
be mapped owing to experimental advances in resolv-
ing the electronic spin for ARPES, and the observed 
spin–orbital locking can be captured in DFT simula-
tions104. Compared with weakly correlated topological 
insulators, the characterization of unoccupied states  
in correlated systems is more challenging105. However, in  
a recent study, the unoccupied states of cuprates were 
successfully characterized through the comparison with 
many-body numerical calculations106.

Beyond single-particle states, non-equilibrium 
approaches have been applied to the characterization of 
collective excitations. Differences in the relaxation time 
structure of pump–probe dynamics allow for character-
ization of charge-density waves, spin fluctuations and 
phonon degrees of freedom107–109, providing a tool to 
disentangle intertwined degrees of freedom in a corre-
lated system. With fine control of the ultrafast pump, the 
‘Higgs’ mode, or amplitude mode, in superconductors 
has been identified in NbN (reFs110–112) and validated by 
comparison with mean-field theory113,114 and by micro-
scopic calculation of photoemission spectroscopy in the 
superconducting state115,116. Additional theoretical work 
has demonstrated how ultrafast approaches can not only 
separate equilibrium modes for cleaner detection, but 
can also be used to characterize the intertwined nature 
of the degrees of freedom near a quantum phase tran-
sition where fermionic and bosonic excitations become 
entangled117.

Creating novel transient states of matter. The most 
intriguing aspect of non-equilibrium approaches might 
be the potential to exploit the change in electronic or 
magnetic dynamics during the pump pulse to achieve 
exotic states of matter that have no equilibrium analogue. 
Consider a wide pump pulse such that the combined 
Hamiltonian of the system and this non-equilibrium 
driving field approximately obey discrete time transla-
tion symmetry over a wide time window. In this regime, 
the transient dynamics can be mapped onto an effective 
static eigenproblem by virtue of Floquet’s theorem. The 
resulting ladder of virtual states represents a steady-state 
solution to the problem given a continuous driving field 
with a well-defined frequency, and this steady-state 
approximation will apply over a range of times near the 
centre of relatively wide pump pulses in time-resolved 
pump–probe schemes.

Experimentally, in materials, the photon-dressed 
sidebands and dynamical symmetry breaking associated 
with this Floquet physics were first observed directly 
in the single-particle spectrum of the surface state of 
a topological insulator using time-resolved ARPES 
(trARPES)118,119. In general, the effective Floquet–Bloch 
band structures of a driven Dirac fermion120 can entail 
a change in band topology121–123; this was first proposed 
for graphene124 and then extended to monolayer transi-
tion metal dichalcogenides125 (Fig. 6a). More recently, this 
type of dynamical Floquet engineering has been adopted 
numerically to create a Weyl semimetal by implementing 
a version of Floquet time-dependent DFT126 (Fig. 6b).

Although a great deal of effort has been devoted to 
Floquet studies in systems with negligible or weak inter-
actions, the possibility of manipulating transient dynam-
ics in strongly interacting systems is an enticing prospect. 
To achieve this, it is essential to not only introduce the 
pump frequency as a new energy scale for determining 
the one-particle and two-particle response functions, but 
also to ‘reshape’ the underlying interacting Hamiltonian 
to stabilize phases of matter that might be inaccessible 
at equilibrium. The central challenge is to understand 
and control both the effective transient dynamics that are 
determined by the pump plateau and the effective distri-
bution that is set by the transient envelope and relaxation 
processes. Theoretically, arguments based on the eigen-
state thermalization hypothesis entail that driven systems 
continuously absorb energy and heat to infinite temper-
ature127,128 unless the system is integrable or many-body 
localized129–131. However, it has been shown that 
long-lived ‘Floquet pre-thermal’ regimes with effective 
engineered local Hamiltonians can persist for a suitable 
separation of energy scales between materials degrees of 
freedom and the external drive132–137. The simplest exam-
ple is the single-band Hubbard model, for which per-
turbation theory leads to a renormalized spin exchange 

J∕ ∕ ∕J A J A A mω U( ) ( = 0) = ∑ ( ) (1 + )m mex ex =−∞
+∞ 2  for an 

off-resonant pump field with frequency ω and pump 
strength A, where U is the value of the Hubbard interaction, 
J m  is the Bessel function of the first kind and m indexes 
the rungs of the Floquet ladder138,139 (Fig. 6c). Beyond 
modifying local spin exchange, circularly polarized  
pumping of frustrated Mott insulators can dynamically 
break time-reversal symmetry and induce a transient chi-
ral spin liquid in a frustrated Mott insulator140, thus chang-
ing not merely the band structure but also the topological  
order of the system.

In addition to manipulating quantum magnets, 
Floquet engineering of effective Hubbard models 
with a resonant drive or at finite doping can similarly 
exhibit pre-thermalized regimes, which are described 
by exotic correlated pair hopping models for photoin-
duced doublon–holon pairs141,142 or photo-enhanced 
Cooper pairing143, respectively. These systems can 
similarly exhibit long pre-thermalized regimes even 
for resonant excitation133,135,144. Microscopic modelling 
and full time-domain simulations have revealed that 
the transient states can mediate post-pump metastable 
excitations in a coherent manner145. Thus, such artifi-
cially designed transient states could provide a platform 
for the study of novel physics not accessible through 
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standard materials synthesis and equilibrium controls, such  
as temperature or pressure.

Controlling orders and metastable states. By taking 
advantage of transient dynamics out of equilibrium, it 
becomes possible to induce transitions between com-
peting or metastable phases that otherwise would be 
subleading orders in equilibrium. The conceptually 
simplest application uses a strong pump field to induce 
a change in the electronic distribution, photodop-
ing or heating of the system to a higher effective tem-
perature. Experimentally, Mott146,147, charge-density 
wave148–150 and other bandgaps151 have been melted by 
an ultrafast pump. Photoexcitation and thermalization 
can be explained using numerical methods such as 
non-equilibrium DMFT81. For example, a Mott insula-
tor has been shown to melt146 through a series of meta-
stable metallic states induced either by pumping or  
by a quantum quench of the Hamiltonian parameters 
(the ratio t/U)152. Although pre-thermalized states can 
be accessed after perturbing a Hubbard model153, strong 
correlations present in the model preclude integrability, 
leading to a smooth thermalization towards an effective  
photodoping condition154 (Fig. 7a).

In comparison to the rather dramatic effects of melt-
ing an insulator or existing order, a more challenging 
task has been to stabilize an out-of-equilibrium order in 
a metal or weakly correlated material. Experimentally, 
the superconducting transition temperature has been 
observed to increase with coherent pumping in K3C60, 
a fulleride compound155. Subsequently, numerous theo-
retical efforts have focused on first explaining the 
observed effect and then predicting other systems that 
may display a similar sort of non-equilibrium super-
conductivity. There are two main explanations for the 
effect: dynamical cooling, which suppresses thermal 
fluctuations, increasing the transition temperature156–158; 
and an increase in effective electron–phonon interac-
tions as a result of photoinduced phonon deformation 
or squeezing159–163, which amplifies the superconduct-
ing order parameter at the level of Bardeen–Cooper–
Schrieffer and Migdal–Eliashberg theory164–166 (Fig. 7b).  
A first-principles study of the A3C60 family further 
reveals that photoinduced deformation of the T1u 
phonon mode can cause an interaction imbalance167, 
favouring superconductivity168.

Ultrafast control of order can have additional prac-
tical meaning in materials with multiple competing 
phases, such as the high-temperature superconduct-
ing cuprates. The transient dynamics in such systems 
can lead to phenomena such as ultrafast switching 
between metallic (superconducting) and insulating 
phases. Following experiments that demonstrated 
transient light-enhanced superconductivity in insulat-
ing, charge-ordered La1.8−xEu0.2SrxCuO4 (reF.169), it was 
expected that pumped correlated materials could display 
a rich variety of phases resulting from a change in the 
balance between dominant and subleading instabilities. 
It was shown that superconductivity can be enhanced 
by a pump through competition with bond-density 
wave170,171 and charge-density wave172 orders. More 
recently, the discussion has progressed to the concept of 
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Fig. 6 | Pumped-induced Floquet physics. a | Floquet 
physics in a semiconductor. A red-detuned pump field 
induces a hybridization gap at the bottom of the 
conduction band in bulk WS2, whereas a conducting state 
forms in this gap at the edge of a finite-sized sample in a 
ribbon geometry. A is the strength of the pump field in 
natural units of the simulation and ε is the electron 
energy. b | Floquet physics in a semimetal. When driven 
by a periodic pump field, Floquet–Weyl points form 3D 
cones in the Brillouin zone of Na3Bi. The band structure 
was calculated using density functional theory and is 
shown here in the kx–ky plane. c | Floquet physics in a 
correlated Mott insulator. The driving susceptibility 
ΔJex/(JexA

2), where Jex is the exchange interaction, for 
frequencies ω evaluated in the Hubbard model above 
(blue) and below the Mott gap (red), obtained from 
dynamical mean-field theory (circles), from the numerical 
Floquet spectrum of a two-site cluster (solid lines) and 
from perturbation theory (dashed lines). a0, lattice 
constant.Panel a is adapted from reF.125, CC-BY-4.0. 
Panel b is adapted from reF.126, CC-BY-4.0. Panel c is 
adapted from reF.138, CC-BY-4.0
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inducing unconventional d-wave superconductivity by 
driving a material with competing charge-density wave 
and spin-density wave ordering tendencies near a quan-
tum phase transition173 (Fig. 7c). Photoinduced localiza-
tion effects have been suggested as a possible pathway 
to further enhance correlations and the competition 
between orders174.

Beyond materials with charge-density wave, spin- 
density wave and superconducting ordering tendencies, 
the idea of manipulating competing orders in correlated 
materials has been extended to excitonic insulators175,176. 
The transient nature of these photoinduced metastable 
phase transitions implies that the traditional paradigm 
of symmetry breaking and long-range order does not 
necessarily apply in simple toy models. Thus, current 
theoretical work focuses on instabilities extracted from 
correlation functions or susceptibilities, re-expressed 
out of equilibrium. What is lacking currently is precise 
treatments of non-equilibrium phases with a unified 
definition connected directly to potential experimental 
observables.

Summary and outlook
With the help of advances in scientific computing, 
the theoretical understanding of photon-based spec-
troscopies has advanced significantly in the past two 
decades. From an equilibrium perspective, this under-
standing has enabled the separate treatment of extrin-
sic measurement and intrinsic electronic properties. 
The combination of first-principles and many-body 
approaches has been used to successfully decipher the 

properties of numerous materials, from semiconduc-
tors and topological insulators to complex transition 
metal oxides and unconventional superconductors. 
Out-of-equilibrium, pump–probe techniques hold 
great advantages in characterizing hidden proper-
ties of materials, creating novel states of matter and 
controlling phase transitions. With appropriate mod-
ifications, equilibrium numerical approaches can be 
advanced to describe pump–probe experiments. These 
methods can quantitatively explain transient phe-
nomena, such as superconductivity, and help to pre-
dict exotic non-equilibrium phases that are accessible  
by a fine control of pump conditions.

The main challenge for current theories lies in the 
oversimplification of materials descriptions owing 
to computational limitations. The mean-field-based 
methods, including the variants of Hartree–Fock, 
random-phase approximation, DMFT and other var-
iational approaches, are computationally efficient and 
provide a direct connection between the physical picture 
and experimental observables. However, oversimplifi-
cation of many-body Hamiltonians means that they can 
provide only a biased, posterior perspective on a spe-
cific problem. The many-body approaches overcome 
some of these issues, providing an exact description of 
the correlated physics induced by various many-body 
interactions through a complicated numerical evalua-
tion. However, as a compromise, these approaches are 
limited by the mathematical complexity of the prob-
lem. For example, ED is restricted to small clusters, 
DMRG is restricted to low dimensions and short-range 

Fig. 7 | Non-equilibrium excitations and phase change. a | Electronic excitations induced by a quantum quench of a 
Néel system. The time (t) evolution of the electron double occupancy d(t) for different values of the Hubbard interaction U 
(top), and the evolution of the electron distribution as a function of energy (ε), n(ε,t), for U = 6 (bottom). b | Superconductivity 
induced by parametrically driven phonons. The plot shows the relative change in the superconducting transition 
temperature with respect to equilibrium in an electron–phonon system as a function of the pump frequency ̄Ω ω∕  and 
the driving amplitude A. The data are evaluated for linearly dispersing phonons with mean frequency ̄ω , relative 
spread ̄ω ω∕  = 0.2 and negative quartic couplings between Raman and infrared-active modes. c | Unconventional 
superconductivity and spin fluctuations induced by a pulse pump. Change in the d-wave pairing correlation (⟨ ⟩Δ Δ†

d d , top) 
and projected spin fluctuations (Λd, bottom) evaluated for various pump strengths A and model parameters (dimensionless 
electron–phonon coupling strength λ and electron–electron coupling strength u) near the boundary between the 
Mott and Peierls phases. The calculation is based on a Hubbard–Holstein model, with the pump field coupled directly to 
the electrons using a Peierls substitution.Panel a is adapted from reF.154, CC-BY-3.0. Panel b is adapted with permission 
from reF.164, American Physical Society. Panel c is adapted with permission from reF.173, American Physical Society.
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entanglement, and QMC is restricted to high tempera-
tures. These issues limit their applicability in resolving 
fine details of experimental measurements in realistic 
materials. First-principles approaches extend mean-field 
methods by including correlation effects through 
exchange–correlation functionals, pseudopotentials and  
force fields. Based on material-specific, atomic ingredi-
ents, these first-principles approaches offer a description of  
both intrinsic material properties and extrinsic details 
of the process for each spectroscopy. However, such a 
first-principles approach obscures underlying physical 
intuition, and current exchange–correlation functional 
treatments underestimate many-body correlations and 
are somewhat dependent on known material-specific 
data sets.

These issues are even more severe out of equilib-
rium. Green’s function methods based on the Keldysh 
formulation, valid only in the perturbative regime, 
require retention of the full two-time dependence of 
correlation functions even if only equal-time quanti-
ties are desired, placing a constraint on the maximum 
achievable simulation time. Many-body methods fare 
even worse: real-time QMC suffers from a severe phase 
problem even for models that are free of sign problems 
in equilibrium, limiting its applicability to ultrashort 
time behaviour only, and DMRG and tensor network 
methods are restricted by the exponential increase of the 
bond dimension with time. First-principles approaches 
such as time-dependent DFT, although computationally 

scalable, have a limited domain of applicability owing 
to the shortcomings of currently available exchange–
correlation functionals. The simulation of spectrosco-
pies proves especially difficult for strongly correlated 
methods, as more complicated multi-time correlation 
functions such as RIXS or Raman cross sections are 
currently computationally inaccessible even for small 
systems out of equilibrium. Finally, oversimplification 
of the materials description is an even more severe issue 
in a non-equilibrium setting. For example, proper mod-
elling of pump–probe experiments should require a 
microscopic description of the light–matter interaction 
beyond a Peierls substitution in effective low-energy 
models, as well as correct treatment of the lattice and 
multi-orbital effects.

Despite the challenges faced by each of these 
approaches, there has nevertheless been remarkable pro-
gress in theoretical and numerical methods for advanced 
spectroscopies, occurring in tandem with novel experi-
mental advances in both table-top and large-scale facility 
investigations of quantum matter. As the golden age of 
spectroscopy progresses, we can be sure that advances 
in both theory and experiment will bring us closer to 
understanding the behaviour of materials on their 
intrinsic time and length scales, with the hope of unrav-
elling the phenomena of emergence through predictive 
tools for novel quantum phenomena and materials.
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