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Probing light-driven quantum materials with
ultrafast resonant inelastic X-ray scattering
Matteo Mitrano1✉ & Yao Wang 2✉

Ultrafast optical pulses are an increasingly important tool for controlling quantum materials

and triggering novel photo-induced phase transitions. Understanding these dynamic phe-

nomena requires a probe sensitive to spin, charge, and orbital degrees of freedom. Time-

resolved resonant inelastic X-ray scattering (trRIXS) is an emerging spectroscopic method,

which responds to this need by providing unprecedented access to the finite-momentum

fluctuation spectrum of photoexcited solids. In this Perspective, we briefly review state-of-

the-art trRIXS experiments on condensed matter systems, as well as recent theoretical

advances. We then describe future research opportunities in the context of light control of

quantum matter.

Understanding and controlling quantum materials—material systems exhibiting quantum-
mechanical effects over wide energy and length scales1—is a central challenge in modern
condensed matter physics. Over the last two decades, ultrafast lasers have had a tre-

mendous impact on quantum materials research and provided a novel route to on-demand
engineering of their electronic and structural properties. They have not only allowed for tuning
well-known states of matter far from equilibrium, e.g., magnetism2–6, charge/spin order7–11, and
ferroelectricity12–14, but also led to novel dynamical phenomena, such as transient super-
conductivity15–18 and Floquet topological phases19–21.

In nonequilibrium experiments, a sample is typically excited by a pump pulse and monitored
by a subsequent probe. Interpreting the properties of a photoexcited material, especially when
different instabilities are intertwined, requires precise knowledge of how the lattice, band
structure, and collective fluctuations respond to the pump. To meet these needs, the ultrafast
community developed ultrafast X-ray and electron diffraction for monitoring the crystal lat-
tice22–25 and time- and angle-resolved photoemission (trARPES) for probing the electronic
structure7,9,26. On the other hand, light-driven collective excitations are commonly investigated
with ultrafast optical methods27–29, which however cannot probe their dispersion in reciprocal
space owing to the negligible momentum of optical photons. This implies that the microscopic
distribution of nonequilibrium fluctuations in quantum materials is largely inaccessible to most
existing experimental methods.
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Time-resolved resonant inelastic X-ray scattering (trRIXS)
is a momentum-resolved spectroscopy aimed to interrogate
nonequilibrium collective modes, which has been recently
enabled by the development of femtosecond X-ray free-electron
lasers (XFELs)30,31. As shown in Fig. 1a, trRIXS probes non-
equilibrium dynamics by scattering ultrashort X-ray pulses tuned
to a characteristic atomic absorption edge. Once the incoming
X-ray photon is absorbed, the pump-excited material transitions
to an intermediate state in which a core-level electron is trans-
ferred to (or above) the valence orbitals. Within a few fs, the
highly unstable intermediate state decays and a valence electron
fills the core hole by emitting a X-ray photon (see Fig. 1b). The
scattered X-rays are then analyzed in both momentum and
energy, yielding information about the pump-induced collective
dynamics. The resonance condition greatly enhances the RIXS
cross-section, but the many-body interactions in the inter-
mediate state are what really makes trRIXS sensitive to a wide
variety of charge, orbital, and spin excitations of the valence
electrons32,33.

In this perspective, we survey recent experimental and theo-
retical progress in trRIXS. Then, we outline future research
opportunities emerging from these new spectroscopic capabilities.
While trRIXS will have a tremendous cross-disciplinary impact,
ranging from chemistry34–36 to condensed matter physics, here
we specifically focus on quantum materials’ research.

A unique experimental tool
The Linac Coherent Light Source (LCLS) at the SLAC National
Accelerator Laboratory has been at the forefront in developing
trRIXS capabilities in both the soft and hard X-ray regime30,31.
Over the last five years, these developments motivated a variety of
experiments focused on probing nonequilibrium correlations in
light-driven quantum materials, especially in connection to the
problem of high-Tc superconductivity.

Key challenges in the physics of high-Tc superconductors are
understanding the relationship between superconductivity and
other low-temperature instabilities, as well as devising routes to
further enhance Tc. In the case of copper oxides, while super-
conductivity appears upon doping, hole-like carriers also form
unidirectional charge (and sometimes spin) order (CO) mod-
ulations close to 1/8 doping and at temperatures above the
superconducting Tc, which result in diffraction peaks at a finite-
momentum QCO

37–43.
Experimental and theoretical evidence suggest indeed that these

two phases interplay and often compete39,44,45. Furthermore,
ultrafast optical pulses have been found to enhance super-
conductivity while melting charge order correlations15–17,46–48,
and vice versa49. Understanding how light affects the balance
between these two phases and their collective dynamics with the
aim of further optimizing superconductivity requires measuring
the transient inelastic charge spectrum.

To this end, a recent trRIXS experiment at the Cu L-edge
investigated the light-induced charge order dynamics of the pro-
totypical stripe-ordered cuprate La2−xBaxCuO4 (see Fig. 2a)50,51.
trRIXS spectra clearly show that 1.55-eV photons, which tran-
siently enhance interlayer superconducting tunneling46,52, also
deplete the quasielastic charge order peak at QCO (see Fig. 2b, c).
Unlike conventional charge density waves53, the CO is found to
undergo a sudden light-induced sliding motion51 and exhibit an
exponential recovery dominated by yet unobserved diffusive
fluctuations at the sub-meV scale50. By applying a similar
approach to other copper oxides such as YBa2Cu3O7−δ and
Nd1+xBa2−xCu3O7−δ

54, we expect trRIXS to provide new insights
about the broader dynamical relationship between charge order
and superconductivity.

Aside from charge dynamics, spin fluctuations — particu-
larly, near the antiferromagnetic wavevector QAF= (0.5, 0.5)
reciprocal lattice units (r.l.u.) — are believed to contribute to
the superconducting pairing55–60. Thus, their optical excitation
is a promising route to manipulate nonequilibrium super-
conductivity. Being sensitive to spin degrees of freedom
through the intermediate state, trRIXS is the only available
method for measuring the transient magnetic excitation spec-
trum as a function of momentum. Pioneering experiments
provided a first glimpse of light-induced spin dynamics in a
Mott insulator61,62. Unlike Cu L-edge X-rays (see Fig. 2a),
photons at the L-edge of 5d transition metals carry enough
momentum to fully map magnetic fluctuations throughout the
Brillouin Zone (see Fig. 3a). Among the 5d materials, iridates
(Srn+1IrnO3n+1) are particularly interesting analogs of copper
oxides. These compounds may give rise to unconventional
superconductivity upon doping63,64, with pseudospin fluctua-
tions (owing to spin-orbit coupling) playing the same role as
spins in cuprates. Driving onsite orbital excitations with
infrared pump pulses resulted in a significant spectral weight
reshaping of pseudospin excitations at the high-symmetry
points Q1= (0.5, 0) and Q2= (0.5, 0.5) r.l.u. (see Fig. 3b, c)61,62.
These first snapshots of light-stimulated magnetic excitations at
the Ir L-edge show that optical pump pulses with a near-zero
momentum transfer have profound influence on the finite-
momentum spin dynamics throughout the Brillouin Zone of
quantum materials.

These experiments, along with further studies of orbital
excitations65,66, demonstrate how trRIXS provides simulta-
neous access to charge, spin, and orbital degrees of freedom far
from equilibrium. Its sensitivity to collective fluctuations at
large momenta fills a long-standing gap in time-resolved
experiments and makes trRIXS a unique tool to advance our
microscopic understanding of light-driven phenomena in
quantum materials.
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Fig. 1 Basics of a time-resolved resonant inelastic X-ray scattering
(trRIXS) experiment. a A material is driven out of equilibrium by an
ultrafast optical pump and then probed with short, delayed X-ray pulses
with energy and momentum (ki, ωi) resonantly tuned to a specific
absorption edge, which are scattered off the sample with energy and
momentum (kf, ωf). The scattered photon energy is resolved by spatially
separating different spectral components onto a charge-coupled device
(CCD) detector with either a diffraction grating or a crystal analyzer.
b Time-dependent sequence of the trRIXS process. Adapted with
permission from ref. 72 Copyrighted by the American Physical Society.
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An evolving theoretical framework
A fundamental need for current and future trRIXS research lies in
calculating the cross-section and predicting the many-body
response of photoexcited quantum materials. Unlike other spec-
troscopies (e.g., trARPES, and non-resonant light/x-ray scatter-
ing)67–70, the RIXS process involves a four-time correlation
function, owing to the presence of the resonant intermediate
state71,72. Although this complexity entails modeling and
numerical challenges, it is precisely the intermediate state
dynamics which makes RIXS sensitive to a wide variety of col-
lective excitations. Moreover, these excitations encode high-order
correlations beyond the linear response, and thus play a crucial
role in emergent phenomena with strong quantum fluctuations.

If the intermediate state is assumed to last for a negligibly short
time (ultrashort core-hole lifetime (UCL) approximation), the
dominant contribution to the equilibrium RIXS spectrum comes
from the dynamical structure factors32,73–76. For this reason, early
theories of trRIXS focused on calculating charge and spin struc-
ture factors in correlated electron models driven out of
equilibrium68,77. For example, an early simulation of a one-
dimensional Mott insulator excited by a realistic below-gap pump
pulse found evidence of light-induced Floquet replicas in both the
spin and charge response. Different from an ideal Floquet picture,
these light-engineered excitations persisted and evolved after the
pump pulse68, thus indicating that light pulses are conducive to
emergent Floquet dynamics at finite momentum.

Charge Order (CO)

Spin Order (SO)

Bragg peaks

ba c

Fig. 2 Charge order melting in La2−xBaxCuO4. a Reciprocal space map of structural Bragg peaks, charge order (CO) and spin order (SO) peaks in
La2−xBaxCuO4. The blue area represents the maximum momentum transfer achievable at the Cu L-edge (931 eV). The location of peaks in momentum
space is denoted by the Miller indices (H, K, L) and expressed in reciprocal lattice units (r.l.u.) b Time-resolved resonant inelastic X-ray scattering (trRIXS)
spectra of photoexcited La1.875Ba0.125CuO4 at QCO= (0.236, 0, 1.5) r.l.u. at the Cu L-edge for variable pump-probe time delay. c trRIXS spectra for a
selection of time delays showing a prompt melting of the CO, whereas higher energy features of the inelastic spectrum, e.g., dd excitations/Cu2+ emission
and charge transfer (CT) excitations, remain unaffected. Error bars represent Poisson counting uncertainties. Adapted with permission from ref. 50.
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Fig. 3 Driven magnetic excitations in Sr2IrO4. a Dispersion of the in-plane pseudospin excitation spectrum in Sr2IrO4 as function of momentum transfer q.
Black circles correspond to momentum transfer points shown in the other two panels. b, c Ir L-edge (11.215 keV) time-resolved resonant inelastic X-ray
scattering (trRIXS) snapshots of the pseudospin excitations excited with a 620meV pump pulse at negative time delay t (gray) and after 2 picoseconds
(red) at momentum transfer Q1= (0.5, 0) and Q2= (0.5, 0.5) reciprocal lattice units (r.l.u.). The intensity is measured in counts (cts), while error bars
represent Poisson counting uncertainties. The light-induced spectral weight change is highlighted by a red shading. Adapted with author’s permission from
ref. 61.
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Although these results constitute an exciting starting point, the
UCL approximation ignores physical processes faster than the
timescale of the core-hole lifetime (longer than 2 fs at the Cu L-
edge32,78) as well as high-order correlations79. Therefore, a simple
calculation of the structure factors may not capture the full
trRIXS spectrum and miss higher order spectral features such as
bimagnons and dd excitations. In order to compute the full
trRIXS cross-section, one needs to explicitly model the resonant
probe process and account for the finite intermediate state life-
time, leading to a computational complexity OðN4

t Þ, where Nt is
the number of evolution steps71,72.

Figure 4 shows the numerically calculated trRIXS spectrum of a
two-dimensional Hubbard model probed through an indirect
scattering process (e.g., Cu K-edge) and explicitly accounting for
intermediate state effects. Here, excitations are generated through
interactions between the valence electrons and the core hole
during the intermediate state72. Unlike the structure factors
obtained within the UCL approximation, the trRIXS cross-section
contains high-order excitations including the bimagnon at
energy ~3J (J ¼ 4t2h=U is the spin-exchange interaction, th is the
hopping amplitude, and U is the onsite Coulomb repulsion), in
addition to Mott-gap excitations. After being driven by a pump
resonant with the Mott gap, spectral weight gets transferred from
the Mott peak to in-gap excitations and bimagnons. In this case,
the visibility of Floquet replicas of collective excitations is reduced
when compared with ref. 68,71, mainly due to the shorter Floquet
state lifetime in the presence of electron–electron interactions.
The predicted in-gap spectral weight transfer resembles the
quasielastic scattering intensity enhancement observed in the
iridate L-edge trRIXS spectra (see Fig. 3), and could be measured
in future K-edge experiments on gapped correlated materials.

Intermediate state effects are not only required to capture richer
physics in trRIXS simulations, but will also guide the interpreta-
tion of new types of inelastic scattering experiments. RIXS spectra
collected while slightly detuning the incident X-ray pulse energy
away from resonance can be used to selectively enhance the
intensity of excitations involving specific intermediate states72,80

and to extract information about momentum-resolved
electron–phonon coupling of well-isolated modes78,81,82.

Detuning experiments, in tandem with microscopic calculations,
will be particularly impactful in interrogating the electron–phonon
coupling in photoexcited charge density waves11,49,53, light-
induced ferroelectricity13, and superconductivity83.

In summary, advances in trRIXS experiments are accompanied
by a steadily evolving theoretical framework aimed at under-
standing the observed light-induced dynamics. Current compu-
tational capabilites and state-of-the-art algorithms allow for
performing accurate and predictive nonequilibrium simulations
of the trRIXS spectrum in photoexcited correlated electron sys-
tems. In the future, we expect trRIXS theory to play an ever
important role not just in interpreting time-resolved scattering
experiments, but in leading the field towards new discoveries.

A new scientific opportunity
As shown in previous sections, trRIXS is rapidly growing into a
major spectroscopy of light-driven quantum materials, and its
future developments are critically tied to the pace of technological
advances at XFEL facilities. Owing to the small inelastic cross
sections, trRIXS will benefit from a dramatic increase in the
average XFEL spectral brightness from 1020 (LCLS) to 1024−1025

photons s−1 mm−2 mrad−2 (0.1% bandwidth)−1 at 1 keV30,84.
This brightness enhancement will be mainly achieved through
increased repetition rates, e.g., at both the LCLS-II and the Eur-
opean XFEL, and will lead to order-of-magnitude improvements
of the signal-to-noise ratio. Furthermore, higher energy resolu-
tion (especially in the soft X-ray regime) will enable observing
low-energy collective fluctuations, such as phonons and spin
waves. At the time of this writing, large spectrometers are in
construction at both the LCLS-II (NEH2.2/q-RIXS instrument)84

and the European XFEL (hRIXS instrument). The target resolving
power at 1 keV would be of order 3.0 × 104 (~0.03 eV resolution),
thus implying a 20× improvement with respect to the data shown
in Fig. 285. Other experimental endstations with different features
are being developed at the Trieste Free Electron laser Radiation
for Multidisciplinary Investigations (FERMI/Italy), the Pohang
Accelerator Laboratory X-ray Free Electron Laser (PAL-XFEL/S.
Korea), and the Switzerland’s X-ray free-electron laser (Swiss-
FEL). These enhanced capabilities open up a new frontier for the
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and after the pump. Bimagnon features are located at ħω ~ 3J, whereas the Mott-gap excitation continuum is peaked at ħω ~U= 8th. U is the onsite
Coulomb repulsion, whereas J ¼ 4t2h=U is the exchange energy. Adapted with permission from ref. 72. Copyrighted by the American Physical Society.
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investigation of nonequilibrium spin, charge and orbital
dynamics in strongly correlated and topologically non-trivial
materials.

A tantalizing application of trRIXS is the study of spin excita-
tions in light-driven quantum materials. Multiple theoretical stu-
dies have proposed that spin-exchange interactions can be
controlled by renormalizing the effective Hamiltonian interactions
through a periodic drive (see Fig. 5a), in the spirit of the so-called
“Floquet-engineering”86–89. In this idealized scheme, photons
dress the intermediate electronic states of the exchange (or
superexchange) process, leading to an effective energy scale Jeff
(see Fig. 5b). Although the parameter renormalization is rigorous
only for an infinitely-long periodic pump, it could also be achieved
with an ultrashort laser pulse70. Alternatively, the spin excitations
could be dynamically altered through other protocols, e.g., by
distorting the lattice via a nonlinear phonon coupling90,91. Once
Jeff is modified by the pump, trRIXS measurements will interrogate
changes in the dispersion, linewidth and spectral weight of the
spin fluctuation spectrum (see Fig. 5c). A measurement of the
dispersion allows us to disentangle renormalization effects of
multiple coexisting exchange interactions92, which cannot be
discerned from the bimagnon peak in the optical Raman spec-
trum. Furthermore, a lineshape analysis throughout the Brillouin
zone enables exploring excitations beyond magnons, e.g., inco-
herent fluctuations in geometrically frustrated lattices93–96. As the
experimental energy resolution will be of order ~0.03 eV in the
near future84,85, this technique will be particularly effective for
studying materials with relatively large exchange scales, such as
cuprates, iridates and certain nickelates, where the spin excitations
disperse over energies larger than 0.1 eV.

In addition to spin fluctuations, trRIXS will play as well a
pivotal role as a probe of ultrafast charge and orbital dynamics.
We envision here two promising research directions involving the
charge sector of low-dimensional quantum materials, namely
the time-resolved investigation of fractionalized excitations, and
the search for new photoinduced condensation phenomena. In
one dimension, electrons cannot propagate freely, but instead
displace their neighbors due to electron–electron interactions. This
leads to a breakdown (“fractionalization”) of the electron into a
variety of collective excitations propagating with different

velocities97. trRIXS provides an opportunity to study these fun-
damental phenomena in real time by exciting a transient particle-
hole plasma with a high photon energy pump and directly
observing the time-dependent behavior of the collective modes
contained in the transient RIXS spectrum. First experiments could
focus on fractionalization in Sr2CuO3

98 or CaCu2O3
99, and on

manipulating their excitations by dynamically tuning the balance
between spin-orbit coupling and crystal field100. Similarly, trRIXS
experiments in photoexcited Mott insulators could reveal the
fingerprints of new condensation phenomena, such as η-
pairing101,102 and dynamical p-wave superconductivity103. The η-
paired phase is a superfluid of doubly occupied electronic states
carrying finite-momentum Qη and arising from a broken SU(2)
symmetry of the Hubbard Hamiltonian. As the η-pairing is an
eigenstate, but not necessarily a ground state, pump light pulses
open the possibility of stabilizing this yet unobserved phase104–110.
A periodic pump is theoretically predicted to enhance pairing
correlations and establish true off-diagonal long-range order by
dynamically renormalizing the onsite Coulomb repulsion108.
trRIXS would then search for η-pairing signatures in the finite-
momentum pairing susceptibility111, namely a divergent quasie-
lastic structure factor at Qη and a triplet of collective modes at
energies ℏω= 0, ±(U−2μ) (μ being the chemical potential)102.
Beyond η-pairing, resonantly driving orbital degrees of freedom in
doped Mott insulators has also been proposed as a route to
dynamically stabilize p-wave superconductivity103.

The search for new light-driven phenomena in materials
dominated by local electronic correlations also calls for the
development of more advanced spectroscopic methods. One such
approach is trRIXS interferometry. Thanks to the local nature of
the intermediate core holes and the intrinsic coherence of the
scattering process, the RIXS signal can indeed exhibit interference
among different intermediate states112. In the dimerized spin-
orbit coupled insulator Ba3CeIr2O9

113, the intermediate state
involves a coherent superposition of a single core hole on either
of the two atoms in the dimer. This leads to a cos2ðQ � d=2Þ
modulation of the RIXS intensity in momentum space (d being
the intradimer distance). Importantly, the interference pattern
varies in amplitude and phase depending on the symmetry of the
excited-state wavefunction113, thus providing an interferometric
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measurement of the local atomic orbitals. By sampling multiple
interference fringes in the hard X-ray regime (e.g., Ir L-edge, and
Cu K-edges), it would be possible to exquisitely resolve transient
changes to the local electronic structure down to the picometer
level with energy selectivity. Not just limited to dimerized
compounds, this technique could likewise be applied to study
nonequilibrium dynamics of confined electrons along one or two
directions, such as in ladder compounds114 or layered cuprates83

and nickelates115,116.
In a very different context, confined electronic motion is also a

defining property of edge states in light-induced topological
phases, which could be revealed by trRIXS experiments80. Cir-
cularly polarized laser pulses have been shown to break time-
reversal symmetry and induce transient states with non-trivial
Chern numbers21,117–119. An intriguing application of this
experimental approach is the creation of tunable Floquet topo-
logical insulators (FTIs), in which topology can be manipulated
by varying pump amplitude, energy, and polarization120–124. As
shown in Fig. 6a, a possible route for creating a FTI in two
dimensions starts from a material with bulk massless Dirac fer-
mions. The circularly polarized pump induces a gap opening at
the Dirac point and chiral edge modes at the sample boundary,
which disperse across the light-induced bandgap (see Fig. 6b).
Detecting these edge states entails probing either the transient
band structure with trARPES, or their collective modes in the
dynamic structure factor through trRIXS, depending on the
experimental constraints. However, trRIXS offers a crucial
advantage. By resonantly tuning the incident photon energy to
transitions from core states into the light-induced bandgap, this
technique can boost the visibility of the topological edge states
over the bulk signal, and hence distinguish their dispersion from
other bulk collective modes80 (see Fig. 6c). Future developments
in nano-trRIXS may enable the direct spatial imaging of edge
state dynamics and, thus, further increase their visibility over bulk
excitations (although these experiments would require a special
handling of X-ray irradiation effects). Finally, an additional area
of interest (particularly for hard X-ray trRIXS) is the light-control
of candidate topological superconductors under high pres-
sures125–128, which are inaccessible to photoemission
experiments.

This short, and by no means complete, array of examples
underscores how trRIXS measurements, alongside new theoretical
methods, will play an essential role in detecting and under-
standing new dynamic phenomena in light-controlled quantum

materials. Increased XFEL beamtime availability, X-ray brightness
and spectrometer performance will enable more sophisticated
trRIXS experiments with higher energy resolution and polariza-
tion control. The possibilities opened by these advances are dif-
ficult to grasp, but are certainly positioning trRIXS to be on the
leading edge of a decade of discovery.
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